K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

A B C H

a)Xét tam giác HAB và tam giác ABC

góc ABC : chung

góc BHA=góc BAC=90o

Suy ra: tam giác HAB ~ tam giác ABC (g-g)

b)Ta có: tam giác ABC vuông tại A

=>AC2=BC.HC (hệ thức lượng)

c)Ta có: \(BC^2=AB^2+AC^2=15^2+20^2=625\Rightarrow BC=25\left(cm\right)\)

Ta lại có: \(AC^2=BC.HC\left(HTL\right)\Rightarrow HC=\frac{AC^2}{BC}=\frac{20^2}{25}=16\left(cm\right)\)

11 tháng 7 2016

Toán lớp 8

a) Xét ΔHBA và ΔABC có:

∠BHA = ∠BAC = 900 ( GT)

Góc B: Chung

Vậy ΔHBA  ~ ΔABC (g.g)

b) Xét ΔHAC và ΔABC.có:

∠AHC = ∠BAC =900 ( GT)

Góc C : Chung

Vậy ΔHAC ~ ΔABC (g.g)

Suy ra:

2016-05-05_085731

c) Áp dụng định lí Pytago cho vuông tại A, ta có:

2016-05-05_085825

26 tháng 4 2019

A B C H

a) Xét tam giác HBA và tam giác ABC :

\(\widehat{AHB}=\widehat{BAC}\left(=90^0\right)\)

\(\widehat{ABC}\)chung

=> tam giác HBA \(~\)tam giác ABC ( đpcm )

b) Chứng minh tương tự câu a) ta có tam giác ABC \(~\)tam giác HAC

\(\Rightarrow\frac{AC}{HC}=\frac{BC}{AC}\)

\(\Rightarrow AC^2=HC\cdot BC\)( đpcm )

c) Áp dụng đính lý Pytago vào tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\)( cm )

Từ câu b) ta có : \(HC=\frac{AC^2}{BC}=\frac{20^2}{25}=16\)

Vậy....

6 tháng 6 2021

Đây nhé!

Không có mô tả.

Không có mô tả.

Không có mô tả.

26 tháng 4 2016

a) xét tam giác ABC và HAC có:

góc CAB=gócCHA=90độ

chung ACH

suy ra tam giác ABCđồng dạng với tam giác HAC

=> \(\frac{BC}{AC}=\frac{AC}{CH}=>AC^2=BC\cdot CH\)

b) vì tam giác ABC vuông tại A,áp dụng định lý pitago bạn sẽ tính được BC

thay vào \(\frac{BC}{AC}=\frac{AC}{CH}\)

bạn sẽ tính được CH,sau đó tương tự áp dụng pitago cho các tam giác còn lai là ra nhé

kết quả:HC=9,6;AH=7,2;BH=5,4

a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có

góc C chung

Do đó: ΔHAC\(\sim\)ΔABC

b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)

\(HC=\dfrac{AC^2}{BC}=\dfrac{16^2}{20}=12.8\left(cm\right)\)