Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có CE vuông góc AB (GT)
suy ra CE là đường cao (1)
Ta có BD vuông góc AC(GT)
suy ra BD là đường cao (2)
Mà BD giao CE tại H
Từ (1) và (2) suy ra H là trực tâm (định nghĩa )
suy ra AM vuông góc BC (1)
Ta có tam giác ABC cân tại A (GT)
suy ra AB=AC (định nghĩa )
Ta có AM vuông góc BC (CMT)
suy ra góc AMB = góc AMC = 90
Xét tam giác AMB và tam giác AMC có
AM chung
góc AMB = góc AMC =90
AB= AC(CMT)
suy ra tam giác AMB = tam giác AMC (ch-cgv)
suy ra M là trung điểm BC (2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
OK rồi đó
a )
Xét \(\Delta ABI\)và \(\Delta ACI\) có :
\(\hept{\begin{cases}AB=AC\left(GT\right)\\AI\left(chung\right)\\BI=CI\left(GT\right)\end{cases}\Rightarrow\Delta ABI=\Delta ACI\left(c.c.c\right)}\)
\(\Rightarrow\widehat{ABI}=\widehat{ACI}\)( 2 góc tương ứng )
\(\widehat{BAI}=\widehat{CAI}\)( 2 góc tương ứng )
Mà \(AI\)nằm trong \(\widehat{BAC}\)
\(\Rightarrow AI\)là p/g \(\widehat{BAC}\)
b )
Ta có : \(\widehat{ABI}+\widehat{ABM}=180^0\) ( 2 góc kề bù )
\(\Rightarrow\widehat{ABM}=180^0-\widehat{ABI}\)
\(\widehat{ACI}+\widehat{ACN}=180^0\)( 2 góc kề bù )
\(\Rightarrow\widehat{ACN}=180^0-\widehat{ACI}\)
Lại có : \(\widehat{ABI}=\widehat{ACI}\)
\(\Rightarrow180^0-\widehat{ABI}=180^0-\widehat{ACI}\)
\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)
Xét \(\Delta ABM\)và \(\Delta ACN\)có :
\(\hept{\begin{cases}AB=AC\left(GT\right)\\\widehat{ABM}=\widehat{ACN}\\BM=CN\left(GT\right)\end{cases}\Rightarrow\Delta ABM=\Delta ACN\left(c.g.c\right)}\)
\(\Rightarrow AM=AN\)( 2 cạnh tương ứng )
c )
Do \(\widehat{BAI}=\widehat{CAI}\left(theo:a\right)\)
hay \(\widehat{BAK}=\widehat{CAK}\)
Xét \(\Delta ABK\)và \(\Delta ACK\)có :
\(\hept{\begin{cases}AB=AC\left(GT\right)\\\widehat{BAK}=\widehat{CAK}\left(cmt\right)\Rightarrow\\AK\left(chung\right)\end{cases}\Delta ABK=\Delta ACK\left(c.g.c\right)}\)
\(\Rightarrow\widehat{ABK}=\widehat{ACK}\)( 2 góc tương ứng )
Mà \(\widehat{ABK}=90^0\left(BK\perp AB\right)\)
\(\Rightarrow\widehat{ACK}=90^0\)
\(\Rightarrow KC\perp AC\left(Đpcm\right)\)
a ) Xét ∆BAD và ∆CAD
AB = AC ( ∆ABC cân )
\(\widehat{B}=\widehat{C}\)
\(\widehat{BAD}=\widehat{DAC}\)
=> ∆ABH = ∆ACH(g.c.g)
1. Áp dụng bất đẳng thức của tam giác ta có :
\(\left\{{}\begin{matrix}BC< 6\\4< BC+2\\2< BC+4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BC< 6\\BC>2\end{matrix}\right.\)
Mà BC chẵn và BC nguyên
⇒ BC=4
kcj bn