Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{35^3+5.35^2-5^3.7}{10.70^2+10^2.70-10^3}=\frac{5^3.7^3+5^3.7^2-5^3.7}{10^3.7^2+10^3.7-10^3}=\frac{5^3.7.\left(7^2+7-1\right)}{10^3.\left(7^2+7-1\right)}.\)
=> \(B=\frac{5^3.7}{10^3}=\frac{5^3.7}{2^3.5^3}=\frac{7}{2^3}=\frac{7}{8}\)
a) ta có : \(z-x=-12\Leftrightarrow z=x-12\)
\(\Rightarrow yz=42\Leftrightarrow y\left(x-12\right)=42\Leftrightarrow xy-12y=42\)
\(\Leftrightarrow-30-12y=42\Leftrightarrow12y=-30-42=-72\Leftrightarrow y=\dfrac{-72}{12}=-6\)
ta có : \(y=-6\Rightarrow xy=-30\Leftrightarrow x.-6=-30\Leftrightarrow x=\dfrac{-30}{-6}=5\)
ta có : \(x=5\Rightarrow z=5-12=-7\)
vậy \(x=5;y=-6;z=-7\)
b) ta có :\(A=7^{10}+7^9-7^8=7^8.\left(7^2+7-1\right)=7^8.55=7^8.5.11⋮11\)
\(\Leftrightarrow7^8.5.11\) chia hết cho \(11\) \(\Leftrightarrow\) A chia hết cho 11
vậy A chia hết cho 11 (đpcm)
a)xy=30 ;yz=42=>\(y=\dfrac{30}{x}\);\(y=\dfrac{42}{z}\)
Do đó \(\dfrac{30}{x}=\dfrac{42}{z}\)
Áp dụng t/c của dãy tỉ số bằng nhau,tac có:
\(\dfrac{30}{x}=\dfrac{42}{z}\)=\(\dfrac{42-30}{z-x}\)=\(\dfrac{12}{-12}=-1\)
=>x=-30;z=-42
Do đó y=\(\dfrac{30}{x}=\dfrac{30}{-30}=-1\)
\(B=\dfrac{35^3+5\cdot35^2-5^3\cdot7}{10\cdot70^2+10^2\cdot70-10^3}=\dfrac{\left(5\cdot7\right)^3+5\cdot\left(5\cdot7\right)^2-5^3\cdot7}{2\cdot5\cdot\left(2\cdot5\cdot7\right)^2+\left(2\cdot5\right)^2\cdot2\cdot5\cdot7-\left(2\cdot5\right)^3}=\dfrac{5^3\cdot7^3+5\cdot5^2\cdot7^2-5^3\cdot7}{2\cdot5\cdot2^2\cdot5^2\cdot7^2+2^2\cdot5^2\cdot2\cdot5\cdot7-2^3\cdot5^3}=\dfrac{5^3\cdot7^3+5^3\cdot7^2-5^3\cdot7}{2^3\cdot5^3\cdot7^2+2^3\cdot5^3\cdot7-2^3\cdot5^3}=\dfrac{5^3\left(7^3+7^2-7\right)}{2^3\cdot5^3\left(7^2+7-1\right)}=\dfrac{343+49-7}{8\cdot\left(49+7-1\right)}=\dfrac{385}{8\cdot55}=\dfrac{385}{440}=\dfrac{7}{8}\)
Vậy \(B=\dfrac{7}{8}\)
\(a,7^6+7^5-7^4⋮55\)
\(7^4\left(7^2+7-1\right)⋮55\)
\(7^4\times55⋮55\left(dpcm\right)\)
\(8^{12}-2^{33}-2^{30}\)
\(=8^{12}-\left(2^3\right)^{11}-\left(2^3\right)^{10}\)
\(=8^{12}-8^{11}-8^{10}\)
\(=8^{10}\left(8^2-8-1\right)\)
\(=8^{10}\times55⋮55\left(dpcm\right)\)
1) ta có x.y=-30=>y=\(-\frac{30}{x}\)
z-x=-12=> z=-12-x
nên y.z=\(-\frac{30}{x}.\left(-12-x\right)=42\)
\(=\frac{360}{x}-\frac{30x}{x}=42\)
\(=\frac{360-30x}{x}=42\)
\(=>360-30x=42x\)
\(=360-30x-42x=0\)
\(=360-72x=0\)
\(< =>72x=360\)
\(x=5\)=> \(y=-6\); \(z=-7\)
Bài 2:
a: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)
b: \(5A=5+5^2+...+5^{51}\)
\(\Leftrightarrow4A=5^{51}-1\)
hay \(A=\dfrac{5^{51}-1}{4}\)
Bài 3:
\(S=\left(1^2+2^3+3^3+...+10^2\right)\cdot2=385\cdot2=770\)
\(A=7^{10}+7^9-7^8\)
\(A=7^8\left(7^2+7-1\right)=7^8\cdot55\)
\(A=7^8\cdot5\cdot11\)
Vậy A chia hết cho 11
A = 710 + 79 - 78
A = 78 . (72 + 7 - 1)
A = 78 . (49 + 7 - 1)
A = 78 . 55
A = 78 . 5 . 11 chia hết cho 11
=> đpcm
1.Ta có A= 710 +79 - 78
A= 78 .(72 +7 -1)
A=78 .55
=> A chia hết cho 11( vì có thừa số 55 chia hết cho 11)
bạn biết làm câu 2 không