Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{4}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)
\(\frac{1}{9}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
\(\frac{1}{16}=\frac{1}{4\cdot4}< \frac{1}{3\cdot4}\)
.............................................................
\(\frac{1}{10000}=\frac{1}{100\cdot100}< \frac{1}{99\cdot100}\)
\(\Rightarrow\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
\(\Rightarrow\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}< 1\)(đpcm)
Xin tk
Ta có: 1414+1919+116116+.....+110000110000=12.212.2+13.313.3+.......+1100.1001100.100
mà 12.212.2+13.313.3+.......+1100.1001100.100 < 11.211.2+12.312.3+.......+199.100199.100
⇒⇒ 12.212.2+13.313.3+.......+1100.1001100.100 < 1-1212+1212-1313+.......+199199-11001100
⇒⇒ 12.212.2+13.313.3+.......+1100.1001100.100 < 1-11001100
⇒⇒ 12.212.2+13.313.3+.......+1100.1001100.100 < 1
A/5+10+15+...+1500
=5+10+15+...+1500 ta có:1500-5:5+1=300(số hạng)
=(5+1500)x300:2=225750
\(E=\dfrac{\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{2002}-1\right)\left(\dfrac{1}{2003}-1\right)}{\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot...\cdot\dfrac{9999}{10000}}\)
\(=\dfrac{\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{2002}\right)\left(1-\dfrac{1}{2003}\right)}{\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{100^2}\right)}\)
\(=\dfrac{\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{2002}\right)\left(1-\dfrac{1}{2003}\right)}{\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{100}\right)\left(1+\dfrac{1}{100}\right)}\)
\(=\dfrac{\dfrac{100}{101}\cdot\dfrac{101}{102}\cdot...\cdot\dfrac{2002}{2003}}{\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1+\dfrac{1}{100}\right)}\)
\(=\dfrac{100}{2003}:\left(\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\right)\)
\(=\dfrac{100}{2003}:\left(\dfrac{101}{2}\right)=\dfrac{100}{2003}\cdot\dfrac{2}{101}=\dfrac{200}{202303}\)
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{9999}{10000}\)
\(A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{99.101}{100.100}\)
\(A=\frac{\left(1.2.3.....99\right).\left(3.4.5.....101\right)}{\left(2.3.4.....100\right).\left(2.3.4.....100\right)}\)
\(A=\frac{1.101}{2.100}=\frac{101}{200}\)
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}......\frac{9999}{10000}\)
\(A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{99.101}{100.100}\)
\(A=\frac{1.2.3.4.....99}{2.3.4.5.....100}.\frac{3.4.5.6.....101}{2.3.4.5.....100}\)
\(A=\frac{1}{100}.\frac{101}{2}\)
\(A=\frac{101}{200}\)
\(\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)....\left(\frac{1}{121}-1\right)\)
= \(-\frac{3}{4}.-\frac{8}{9}...-\frac{120}{121}\)
= \(\frac{-3.8....120}{4.9...121}\)
= \(\frac{-1.3.2.4...10.12}{2^2.3^3...11^2}\)
= \(-\frac{12}{2.11}\)
= \(-\frac{6}{11}\)
Tính
(1/4-1).(1/9-1).(1/16-1).....(1/121-1)
\(\left(\frac{1}{4}-1\right).\left(\frac{1}{9}-1\right).\left(\frac{1}{16}-1\right).....\left(\frac{1}{121}-1\right)\\ =\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}.....\frac{-120}{121}\)
\(=\frac{-1.3}{2.2}.\frac{-2.4}{3.3}.\frac{-3.5}{4.4}.....\frac{-10.12}{11.11}\)
\(=\frac{\left(-1.3\right).\left(-2.4\right).\left(-3.5\right).....\left(-10.12\right)}{2^2.3^2.4^2.....11^2}\\ =\frac{\left(-1\right).\left(-2\right).\left(-3\right).....\left(-10\right)}{2.3.4.....11}.\frac{3.4.5.....12}{2.3.4.....11}\)
\(=\frac{1}{2}.\frac{12}{11}\\ =\frac{6}{11}\)
A = \(\dfrac{3}{4}\).\(\dfrac{8}{9}\).\(\dfrac{15}{16}\)...\(\dfrac{9999}{10000}\)
A = \(\dfrac{1.3.2.4..3.5......99.101}{2.2.3.3.4.4....100.100}\)
A = \(\dfrac{1.2.3..4.5.....99}{2.3.4.5.....99.100}\).\(\dfrac{3.4.5....100.101}{2.3.4.5...100}\)
A = \(\dfrac{1}{100}\).\(\dfrac{101}{2}\)
A = \(\dfrac{101}{200}\)
2; B = (1 - \(\dfrac{1}{2}\)).(1 - \(\dfrac{1}{8}\))...(1 - \(\dfrac{1}{n+1}\))
Xem lại đề bài.