K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2018

99/200

9 tháng 8 2018

\(\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+....+\frac{1}{98\cdot100}\)

\(=\frac{1}{2}\left(\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+.......+\frac{2}{98\cdot100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+......+\frac{1}{98}-\frac{1}{100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)=\frac{49}{200}\)

16 tháng 4 2022

=1/2 - 1/4 + 1/4 - 1/6 + ... + 1/98 - 1/100

=1/2 - 1/100 = 49/100

16 tháng 4 2022

1/2 - 1/4 +  1/4 - 1/6 + 1/6 - 1/8 + ... + 1/96 - 1/98 + 1/98 - 1/100

= 1/2 - 1/100 

= 49/100

\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...........+\frac{1}{98.100}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

cho mình nha!

14 tháng 8 2017

Ta có:

\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{98.100}\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{1}{4,6}+\frac{1}{6.8}+...+\frac{1}{98.100}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{49}{100}=\frac{49}{200}\)

14 tháng 8 2017

Đặt \(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{98.100}\)

\(4-2=2;6-4=2;...\)

\(2A=\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(2A=\frac{1}{2}-\frac{1}{100}\)

\(2A=\frac{49}{100}\)

14 tháng 5 2023

M = \(\dfrac{5}{2.4}\) + \(\dfrac{5}{4.6}\)\(\dfrac{5}{6.8}\)+ ...+ \(\dfrac{5}{96.98}\)\(\dfrac{5}{98.100}\)

M = \(\dfrac{5}{2}\).( \(\dfrac{2}{2.4}\) + \(\dfrac{2}{4.6}\)\(\dfrac{2}{6.8}\)+...+ \(\dfrac{2}{96.98}\)\(\dfrac{2}{98.100}\))

M = \(\dfrac{5}{2}\).( \(\dfrac{1}{2}-\dfrac{1}{4}\)\(\dfrac{1}{4}-\dfrac{1}{6}\)\(\dfrac{1}{6}\) - \(\dfrac{1}{8}\)+...+ \(\dfrac{1}{96}\)-\(\dfrac{1}{98}\)\(\dfrac{1}{98}\)-\(\dfrac{1}{100}\))

M = \(\dfrac{5}{2}\).(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\))

M = \(\dfrac{49}{40}\)

\(x\) \(\times\) M - 1 = \(\dfrac{20}{29}\)

\(x\) \(\times\) \(\dfrac{49}{40}\) = \(\dfrac{20}{29}\) + 1

\(x\) \(\times\) \(\dfrac{49}{40}\) = \(\dfrac{49}{29}\)

\(x\)           = \(\dfrac{49}{29}\) : \(\dfrac{49}{40}\)

\(x\)           = \(\dfrac{40}{29}\)

11 tháng 11 2017

A=(1.2)(2.2)+(2.2)(3.2)+...+(50.2)(51.2)

A=1.2.4+2.3.4+...+50.51.4

A=4(1.2+2.3+...+50.51)

M= 1.2+2.3+...+50.51

3M=1.2.3+2.3.(4-1)+...+50.51.(52-49)

=1.2.3+2.3.4-1.2.3+...+50.51.52-49.50.51

= 50.51.52

=132600

=> M=44200

=> A=4M=176800

12 tháng 11 2017

\(B=2.4+4.6+6.8+...+98.100\)

\(B=2.\left(1.2\right)+2.\left(2.3\right)+2.\left(3.4\right)+...+2.\left(49.50\right)\)

\(B=2\left(1.2+2.3+3.4+....+49.50\right)\)

Đặt:

\(A=1.2+2.3+3.4+...+49.50\)

\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+49.50.\left(51-48\right)\)

\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+49.50.51-48.49.50\)

\(3A=49.50.51\)

\(A=\dfrac{49.50.51}{3}=41650\)

\(B=2A=41650.2=83300\)

22 tháng 3 2018

6A = 2 . 4 . 6 + 4.6.6 + 6.8.6 + ... + 98 . 100 . 6 = 2.4.6 + 4.6.(8-2) + ... + 98. 100 . (102 - 96)

                                                                           = 2.4.6 +4.6.8 - 2.4.6 + .... + 98.100 . 102 - 96.98.100

                                                                            = 98. 100 . 102

                                                                            = 999600

Suy ra A = 166600

Vậy ______________________

22 tháng 3 2018

=166600

27 tháng 6 2018

\(D=\dfrac{3}{2.4}+\dfrac{3}{4.6}+\dfrac{3}{6.8}+...+\dfrac{3}{98.100}\)

\(=\dfrac{3}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)\)

\(=\dfrac{3}{2}\left(\dfrac{1}{2}-\dfrac{1}{100}\right)\)

\(=\dfrac{3}{2}.\dfrac{49}{100}=\dfrac{147}{200}\)

27 tháng 6 2018

\(D=\dfrac{3}{2\cdot4}+\dfrac{3}{4\cdot6}+\dfrac{3}{6\cdot8}+...+\dfrac{3}{98\cdot100}\\ =\dfrac{3}{2}\cdot\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{98\cdot100}\right)\\ =\dfrac{3}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)\\ =\dfrac{3}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{100}\right)\\ =\dfrac{3}{2}\cdot\dfrac{49}{100}\\ =\dfrac{147}{200}\)