Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*) f(1) = 1^100 + 1^99 + ...+ 1 + 1
= 1+ 1 + 1 + ...+ 1 + 1 (101 số 1)
= 101
tương tự:
*) f(-1) = -1 - 1 - 1 ... - 1 - 1 + 1 (100 chữ số 1)
= -100 + 1 = -99
*) đặt f(2) = 2^100 + 2^99 + ...+ 2^2 + 2 + 1 = A
=> 2A = 2^101 + 2^100 + ... + 2^3 + 2^2 + 2
=> 2A - A = 2^101 + 2^100 + ... + 2^3 + 2^2 + 2 - ( 2^100 + 2^99 + ...+ 2^2 + 2 + 1)
<=> A = 2^101 - 1
=> f(2) = 2^101 - 1
tương tự:
*) đặt f(-2) = -2^100 - 2^99 ...- 2^2 - 2 - 1 = B
=> 2B = -2^101 - 2^100 ... - 2^3 - 2^2 - 2
=> 2B -B = -2^101 - 2^100 ... - 2^3 - 2^2 - 2 - ( -2^100 - 2^99 ...- 2^2 - 2 - 1)
<=> B = -2^101 + 1
=> f(-2) = -2^101 + 1
g(1) = 1 + 1^3 + 1^5 + ... + 1^101 (51 số 1)
= 51
g(-1) = -1 - 1^3 - 1^5.... - 1^101 (51 số 1)
= -51
đặt g(3) = 3 + 3^3 + 3^5 + ...+ 3^101 = A
=> 3^2 * A = 3^3 + 3^5 + ....+ 3^103
=> 9A - A = 3^3 + 3^5 + ....+ 3^103 - (3 + 3^3 + 3^5 + ...+ 3^101)
=> 8A = -3 + 3^103
=> A = \(\dfrac{3^{103}-3}{8}\)
=> g(3) = \(\dfrac{3^{103}-3}{8}\)
a) Ta có: f(x) = x100+x99+x98+...+x+1
=>2f(x) = x101+x100+x99+...+x+1
=>f(x) = 2f(x)-f(x)=(x101+x100+...+x+1)-(x100+x99+...+x+1)= x101-1
=>f(2) = 2101-1
=>f(-2) = (-2)101-1
b)câu còn lại tự giải :D
f(x) = x100+x99+x98+...+x+1
=>2f(x) = x101+x100+x99+...+x
=>f(x) = 2f(x)-f(x)=(x101+x100+...+x)-(x100+x99+...+x+1)= x101-1
=>f(2) = 2.101-1 = 201
=>f(-2) = (-2)101-1 = -203
(1-x2)(x2+x3+....+x98+x99) vì mình chưa ghi hết đầu bài là p/t thành nhân tử
\(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{98}{2^{98}}+\frac{99}{2^{99}}+\frac{100}{2^{100}}\)
\(2A=1+\frac{2}{2}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{99}{2^{98}}+\frac{100}{2^{99}}\)
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\) (lấy 2A - A = A)
Đặt \(B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
\(2B=2+1+\frac{1}{2}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\)
\(B=2B-B=2-\frac{1}{2^{99}}\)
Do đó: \(A=2-\frac{1}{2^{99}}-\frac{100}{2^{100}}< 2\)
\(1^2+2^2+3^2+...+99^2+100^2\)
\(=1+2\left(1+1\right)+3\left(2+1\right)+99\left(98+1\right)+100\left(99+1\right)\)
\(=1+1.2+2+2.3+3+...+98.99+99+99.100+100\)
\(=\left(1.2+2.3+3.4+...+99.100\right)+\left(1+2+3+...+99+100\right)\)
\(=333300+5050\)
\(=338050\)
\(A=2+2^3+...+2^{101}\)
\(4A=2^3+2^5+...+2^{101}+2^{103}\)
\(4A-A=2^{103}-2\)
\(3A=2^{103}-2\)
\(A=\dfrac{2^{103}-2}{3}\)
\(\Rightarrow1+2+2^3+...+2^{101}=A+1=\dfrac{2^{103}+1}{3}\)