Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì 1/1*2=1-1/2
1/2*3=1/2-1/3
.....................
1/2014*2015=1/2014-1/2015
=1-1/2+1/2-1/3+1/3-....+1/2014-1/2015
=1-1/2015
=2014/2115
\(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+....+\frac{1}{2014x2015}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
=\(1-\frac{1}{100}\)
=\(\frac{99}{100}\)
ta có\(A=\frac{4}{1\cdot2}+\frac{4}{2\cdot3}+\frac{4}{3\cdot4}+...+\frac{4}{2014\cdot2015}\)
\(=4\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2014\cdot2015}\right)\)
\(=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\right)\)
\(=4\left(1-\frac{1}{2015}\right)\)
\(=4\cdot\frac{2014}{2015}\)
\(=\frac{8056}{2015}\)
VẬY A=\(\frac{8056}{2015}\)
a)(y+2):5-5x5=378
(y+2):5-25=378
(y+2):5=378+25
(y+2):5=403
(y+2)=403x5
y+2=2015
y=2015-2
y=2013
(y+2):5-5.5=378
(y+2):5-25=378
(y+20)=378+25
(y+2)=403
(y+2)=403.5
y+2=2015
y=2015-2
y=2013
1/1x2 + 1/2x3 + 1/3x4 + ... + 1/24x25
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/24 - 1/125
= 1 - 1/25
= 24/25
Ta có :\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2008.2009}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\)
\(=1-\frac{1}{2009}=\frac{2008}{2009}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2008\cdot2009}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\)
\(=\frac{1}{1}-\frac{1}{2009}=\frac{2008}{2009}\)
Ta có: A = 1 - 1/2 + 1/3 - 1/4 + ... +1/2013 - 1/2014
A = 1 + 1/2 + 1/3 + 1/4 +... + 1/2013 + 1/2014 - 2.(1/2 + 1/4 + ... + 1/2014)
A = 1 + 1/2 + 1/3 + 1/4 +... + 1/2013 + 1/2014 - (1 + 1/2 + 1/3 + ... + 1/1007)
A = 1/1008 + 1/1009 + ... + 1/2014
bạn viết lại B được ko
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(A=1-\frac{1}{2014}\)
\(A=\frac{2013}{2014}\)
bài B thì đề khó hiểu quá
bn ghi lại đề rồi mình giải
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(=1-\frac{1}{2006}\)
\(=\frac{2005}{2006}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)
= \(1-\frac{1}{2006}\)
= \(\frac{2005}{2006}\)
1/1*2 + 1/2*3 + 1/3*4 + ... + 1/2013*2014 + 1/2014*2015
= 1 -1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2013 - 1/2014 + 1/2014 - 1/2015
=1-1/2015
=2014/2015
=1-1/2+1/2-1/3+...+1/2014-1/2015
=1-1/2015
=2014/2015