K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2020

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

19 tháng 1 2020

v các bn biết đáp án  0

28 tháng 12 2016

làm sao mà vẽ được

8 tháng 11 2023

𝙁𝙊𝙍

⊂_ヽ 𝙔𝙊𝙐

      \\ Λ_Λ

          \( ˇωˇ)

              > ⌒ヽ

            / へ\

         / / \\𝙋𝘼𝙂𝙀

       レ ノ ヽ_つ

     / /

    ( (ヽ

    | |、\

    | 丿 \ ⌒)

    | | ) /

ノ ) Lノ

(_/ 

31 tháng 10 2021

1+1=2

HT~

31 tháng 10 2021

đúng là toán lớp 12 có khác khó ghê

mik nghĩ mãi còn phải dùng cả máy tính nx mới ra =2

28 tháng 12 2016

mình mới học lớp 6

6 tháng 1 2017

mình hỏi những người hiểu biết về câu hỏi này chứ mình không hỏi những người không biết đâu bạn nhé

8 tháng 11 2021

a) Vector pháp tuyến của hai mặt phẳng (\(\alpha\)) và (\(\beta\)lần lượt là \(\overrightarrow{n_{\alpha}}\)=(4;1;2) và \(\overrightarrow{n_{\beta}}\)=(2; -2;1). Do hai vector này không cùng phương nên hai mặt phẳng (\(\alpha\)) và (\(\beta\)cắt nhau.

b) Với x=0, \(\left\{{}\begin{matrix}y+2z+1=0\\-2y+z+3=0\end{matrix}\right.\)⇒ \(\left\{{}\begin{matrix}y=1\\z=-1\end{matrix}\right.\).

Với x=1, \(\left\{{}\begin{matrix}4+y+2z+1=0\\2-2y+z+3=0\end{matrix}\right.\)⇒ \(\left\{{}\begin{matrix}y=1\\z=-3\end{matrix}\right.\).

Suy ra đường thẳng d đi qua hai điểm A(0;1; -1) và B(1;1; -3), \(\overrightarrow{u_d}\)=\(\overrightarrow{AB}\)=(1;0;-2).

Phương trình cần tìm:

d: \(\left\{{}\begin{matrix}x=t\\y=1\\z=-1-2t\end{matrix}\right.\).

c) Gọi M'(x;y;z). Phương trình đường thẳng d' đi qua M(4;2;1) và nhận vector \(\overrightarrow{n_{\alpha}}\)=(4;1;2) làm vector chỉ phương là:

d': \(\left\{{}\begin{matrix}x=4+4t\\y=2+t\\z=1+2t\end{matrix}\right.\). Gọi M"(4+4t; 2+t; 1+2t) ∈ d'.

M"=d'\(\cap\)(α) ⇒ 4(4+4t)+2+t+2(1+2t)+1=0 ⇒ t= -1 ⇒ M''(0;1; -1).

Điểm M' đối xứng với M qua M'', suy ra M'(-4;0; -3).

d) Gọi N'(a;b;c). Phương trình mp(P) đi qua N(0;2;4) và nhận vector \(\overrightarrow{u_d}\)=(1;0; -2) làm vector pháp tuyến là:

(P): x -2z+8=0. Gọi N''(t;1; -1 -2t) ∈ d.

N''=d\(\cap\)(P) ⇒ t -2( -1 -2t)+8=0 ⇒ t= -2 ⇒ N''(-2;1;3).

Điểm N' đối xứng với N qua N'', suy ra N'(-4;0;2).