Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{98\cdot99}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{98}-\dfrac{1}{99}=\dfrac{1}{3}-\dfrac{1}{99}=\dfrac{32}{99}\)
1/3.4 + 1/4.5 + ...+1/98.99
= 1/3-1/4+1/4-1/5+...+1/98-1/99
= 1/3-1/99= 32/99
Ta có: \(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{9702}\)
\(=\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{98\cdot99}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{99}\)
\(=\dfrac{1}{3}-\dfrac{1}{99}\)
\(=\dfrac{32}{99}\)
Giải:
1/12+1/20+1/30+...+1/9702
=1/3.4+1/4.5+1/5.6+...+1/98.99
=1/3-1/4+1/4-1/5+1/5-1/6+...+1/98-1/99
=1/3-1/99
=32/99
Chúc bạn học tốt!
=1 phần 3*4+1 phần 4*5+1 phần 5*6+...+1 phần 98*99
=1 phần 3-1 phần 4+ 1 phần 4- 1 phần 5+...+1 phần 98-1 phần 99
=1 phần 3- 1 phần 99 =32 phần 99
\(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{9702}=\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{98\cdot99}=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{99}=\dfrac{1}{3}-\dfrac{1}{99}=\dfrac{33-1}{99}=\dfrac{32}{99}\)
Có: \(A=\frac{1}{2}+\frac{5}{6}+...+\frac{9899}{9900}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+...+1-\frac{1}{9900}\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(=99-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=99-\left(1-\frac{1}{100}\right)\)
\(=99-\frac{99}{100}< 99\)
\(\Rightarrow A< 99\)
Sửa đề: \(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{9702}\)
Ta có: \(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{9702}\)
\(=\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{98\cdot99}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{99}\)
\(=\dfrac{1}{3}-\dfrac{1}{99}\)
\(=\dfrac{33}{99}-\dfrac{1}{99}=\dfrac{32}{99}\)
\(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{9702}\\ =\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{98\cdot99}\\ =\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{99}\\ =\dfrac{1}{3}-\dfrac{1}{99}\\ =\dfrac{32}{99}\)