Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Phương trình hoành độ giao điểm:
\(2x-3=x+1\Rightarrow x=4\)
\(\Rightarrow y=5\)
Vậy tọa độ giao điểm là \(\left(4;5\right)\)
2.
Hai đường thẳng cắt nhau tại A khi chúng không song song nhau và cùng đi qua A
\(\Rightarrow\left\{{}\begin{matrix}2m-1\ne2n\\\left(2m-1\right).1+n+2=-2\\2n.1+2m-3=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m-1\ne2n\\2m+n=-3\\2m+2n=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}n=4\\m=-\dfrac{7}{2}\end{matrix}\right.\)
a, Thay m = -1/2 vào (d) ta được :
\(y=2x-2.\left(-\frac{1}{2}\right)+2\Rightarrow y=2x+3\)
Hoành độ giao điểm thỏa mãn phương trình
\(2x+3=x^2\Leftrightarrow x^2-2x-3=0\)
\(\Delta=4-4\left(-3\right)=4+12=16>0\)
\(x_1=\frac{2-4}{2}=-1;x_2=\frac{2+4}{2}=3\)
Vói x = -1 thì \(y=-2+3=1\)
Vớ x = 3 thì \(y=6+3=9\)
Vậy tọa độ giao điểm của 2 điểm là A ( -1 ; 1 ) ; B ( 3 ; 9 )
b, mình chưa học
\(y_1+y_2=4\left(x_1+x_2\right)\)
\(\Leftrightarrow x_1^2+x_2^2=4\left(x_1+x_2\right)\)(1)
Xét phương trình hoành độ giao điểm của (d) và (P) ta có:
\(x^2=2x-2m+2\)
\(\Leftrightarrow x^2-2x+2m-2=0\)
Theo hệ thức Vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-2\end{cases}}\)
Từ (1) \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\left(x_1+x_2\right)\)
\(\Leftrightarrow4-4m+4=8\)
\(\Leftrightarrow m=0\)
vậy..
b: Phương trình hoành độ giao điểm là:
-x+3=-2x+1
\(\Leftrightarrow x=-2\)
Thay x=-2 vào y=-x+3, ta được;
y=2+3=5
Thay x=-2 và y=5 vào (d), ta được:
\(-2\left(2-m\right)+2m-1=5\)
\(\Leftrightarrow2m-4+2m-1=5\)
\(\Leftrightarrow4m=10\)
hay \(m=\dfrac{5}{2}\)
Bài 1:
a/ \(\left\{{}\begin{matrix}4=-a+b\\-3=2a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{7}{3}\\b=\frac{5}{3}\end{matrix}\right.\)
b/ Do d song song với \(y=2x+3\Rightarrow\left\{{}\begin{matrix}a=2\\b\ne3\end{matrix}\right.\)
\(3=-5.2+b\Rightarrow b=13\)
c/ Do d vuông góc \(y=-\frac{2}{3}x-5\Rightarrow-\frac{2}{3}.a=-1\Rightarrow a=\frac{3}{2}\)
\(-1=\frac{3}{2}.4+b\Rightarrow b=-7\)
d/ \(b=2\Rightarrow y=ax+2\)
d cắt \(y=x-1\) tại điểm có hoành độ 1 \(\Rightarrow d\) đi qua điểm A(1;0)
\(\Rightarrow0=a+2\Rightarrow a=-2\)
e/ Thay 2 hoành độ vào pt (P) ta được \(\left\{{}\begin{matrix}A\left(2;-4\right)\\B\left(1;-1\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-4=2a+b\\-1=a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-3\\b=2\end{matrix}\right.\)
f/ \(a=2\)
Thay tung độ y=1 vào pt đường thẳng được \(A\left(2;1\right)\)
\(\Rightarrow1=2.2+b\Rightarrow b=-3\)
Bài 2:
\(y=mx-2m-1\Rightarrow\left(x-2\right).m-\left(y+1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\) \(\Rightarrow A\left(2;-1\right)\)
\(y=mx+m-1\Rightarrow\left(x+1\right).m-\left(y+1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow B\left(-1;-1\right)\)
\(y=\left(m+1\right)x+2m-3\Rightarrow y=\left(m+1\right)x+2\left(m+1\right)-5\)
\(\Rightarrow\left(m+1\right)\left(x+2\right)-\left(y+5\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+2=0\\y+5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)
Pt hoành độ giao điểm: \(x^2-2x-2m+1=0\)
\(\Delta'=1+2m-1=2m\ge0\Rightarrow m\ge0\)
a/ Bạn tự giải
b/ Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-2m+1\end{matrix}\right.\)
\(\left(x_1x_2\right)^2-x_2^2+\left(x_1x_2\right)^2-x_1^2=0\)
\(\Leftrightarrow2\left(x_1x_2\right)^2-\left(x_1+x_2\right)^2+2x_1x_2-8=0\)
\(\Leftrightarrow2\left(x_1x_2\right)^2+2x_1x_2-12=0\)
\(\Rightarrow\left[{}\begin{matrix}x_1x_2=2\\x_1x_2=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-2m+1=2\\-2m+1=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\frac{1}{2}< 0\left(l\right)\\m=2\end{matrix}\right.\)
Thay m=0 vào giải thôi
\(x^2-2x+1=0\Rightarrow x=1\)
Thay \(x=1\) vào pt parabol hoặc đường thẳng tùy thích được \(y=1\)
Tọa độ điểm đó là \(A\left(1;1\right)\) hoặc thích đặt B, C, D, E, F gì đó tùy
Lời giải:
PT hoành độ giao điểm:
\(\frac{1}{2}x^2-(2x-m+1)=0\)
\(\Leftrightarrow x^2-4x+2m-2=0(*)\)
Để (P) cắt (d) tại 2 điểm phân biệt thì $(*)$ phải có 2 nghiệm phân biệt.
Điều này xảy ra khi \(\Delta'=4-(2m-2)>0\Leftrightarrow m< 3\)
Khi đó, $x_1,x_2$ sẽ là 2 nghiệm của $(*)$ thỏa mãn:
\(\left\{\begin{matrix} x_1+x_2=4\\ x_1x_2=2m-2\end{matrix}\right.\) (định lý Vi-et)
Ta có:
\(x_1x_2(y_1+y_2)+48=0\)
\(\Leftrightarrow x_1x_2(2x_1-m+1+2x_2-m+1)+48=0\)
\(\Leftrightarrow x_1x_2(x_1+x_2-m+1)+24=0\)
\(\Leftrightarrow (2m-2)(4-m+1)+24=0\)
\(\Leftrightarrow -m^2+6m+7=0\Rightarrow m=7; m=-1\). Kết hợp với đk $m< 3$ suy ra $m=-1$
1, Hoành độ giao điểm 2 đường thẳng đó là:
\(2x-3=x+1\Leftrightarrow x=4\)
Tung độ giao điểm 2 đường thẳng đó là:
\(y=2x-3=2.1-3=-1\)
Vậy tọa độ giao điểm 2 đường thẳng đó là:\(\left(4;-1\right)\)
2, Để đường thẳng (d1) đi qua A(1;-2) thì:
\(-2=\left(2m-1\right).1+n+2\\ \Leftrightarrow2m-1+n+2+2=0\\ \Leftrightarrow2m+n+3=0\left(1\right)\)
Để đường thẳng (d2) đi qua A(1;-2) thì:
\(-2=2n.1+2m-3\\ \Leftrightarrow2n+2m-3+2=0\\ \Leftrightarrow2n+2m-1=0\left(2\right)\)
Từ (1), (2) ta có hệ: \(\left\{{}\begin{matrix}2m+n+3=0\\2n+2m-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{7}{2}\\n=4\end{matrix}\right.\)
1) Xét phương trình hoành độ giao điểm của 2 đường thẳng trên ta có:
\(2x-3=x+1.\\ \Leftrightarrow2x-x=1+3.\\ \Leftrightarrow x=4.\\ \Rightarrow y=5.\)
Tọa độ giao điểm của 2 đường thẳng trên là \(\left(4;5\right).\)
2. Thay tọa độ điểm \(A\left(1;-2\right)\) vào 2 phương trình đường trên ta có:
\(\left\{{}\begin{matrix}\left(2m-1\right)+n+2=-2.\\2n+2m-3=-2.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m+n=-3.\\2m+2n=1.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{7}{2}.\\m=4.\end{matrix}\right.\)