Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho e hỏi là vì sao khúc cuối có dấu bằng mà trên đề k có dấu bằng ạ?
Vì mình lấy giá trị nguyên bạn
Chính xác là \(-\frac{1}{4}< k< \frac{2020-\frac{\pi}{2}}{2\pi}\)
\(\Rightarrow-0,25< k< 321,243\) (1)
Nhưng k nguyên nên chỉ cần lấy khoảng ở số nguyên gần nhất, tức là \(0\le k\le321\)
1.
Hàm tuần hoàn với chu kì \(2\pi\) nên ta chỉ cần xét trên đoạn \(\left[0;2\pi\right]\)
\(y'=\frac{-4}{\left(cosx-2\right)^2}.sinx=0\Leftrightarrow x=k\pi\)
\(\Rightarrow x=\left\{0;\pi;2\pi\right\}\)
\(y\left(0\right)=-3\) ; \(y\left(\pi\right)=\frac{1}{3}\) ; \(y\left(2\pi\right)=-3\)
\(\Rightarrow\left\{{}\begin{matrix}M=\frac{1}{3}\\m=-3\end{matrix}\right.\)
\(\Rightarrow9M+m=0\)
2.
\(\Leftrightarrow y.cosx+y.sinx+2y=2k.cosx+k+1\)
\(\Leftrightarrow y.sinx+\left(y-2k\right)cosx=k+1-2y\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(\Rightarrow y^2+\left(y-2k\right)^2\ge\left(k+1-2y\right)^2\)
\(\Leftrightarrow2y^2-4k.y+4k^2\ge4y^2-4\left(k+1\right)y+\left(k+1\right)^2\)
\(\Leftrightarrow2y^2-4y-3k^2+2k+1\le0\)
\(\Leftrightarrow2\left(y-1\right)^2\le3k^2-2k+1\)
\(\Leftrightarrow y\le\sqrt{\frac{3k^2-2k+1}{2}}+1\)
\(y_{max}=f\left(k\right)=\frac{1}{\sqrt{2}}\sqrt{3k^2-2k+1}+1\)
\(f\left(k\right)=\frac{1}{\sqrt{2}}\sqrt{3\left(k-\frac{1}{3}\right)^2+\frac{2}{3}}+1\ge\frac{1}{\sqrt{3}}+1\)
Dấu "=" xảy ra khi và chỉ khi \(k=\frac{1}{3}\)
Đáp án A
6.
\(\Leftrightarrow\frac{1}{2}cos6x+\frac{1}{2}cos4x=\frac{1}{2}cos6x+\frac{1}{2}cos2x+\frac{3}{2}+\frac{3}{2}cos2x+1\)
\(\Leftrightarrow cos4x=4cos2x+5\)
\(\Leftrightarrow2cos^22x-1=4cos2x+5\)
\(\Leftrightarrow cos^22x-2cos2x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=3>1\left(ktm\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
7.
Thay lần lượt 4 đáp án ta thấy chỉ có đáp án C thỏa mãn
8.
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\left\{\frac{\pi}{6};\frac{\pi}{2}\right\}\)
9.
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}-1\le t\le1\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
\(\Rightarrow mt+\frac{t^2-1}{2}+1=0\)
\(\Leftrightarrow t^2+2mt+1=0\)
Pt đã cho có đúng 1 nghiệm thuộc \(\left[-1;1\right]\) khi và chỉ khi: \(\left[{}\begin{matrix}m\ge1\\m\le-1\end{matrix}\right.\)
10.
\(\frac{\sqrt{3}}{2}cos5x-\frac{1}{2}sin5x=cos3x\)
\(\Leftrightarrow cos\left(5x-\frac{\pi}{6}\right)=cos3x\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-\frac{\pi}{6}=3x+k2\pi\\5x-\frac{\pi}{6}=-3x+k2\pi\end{matrix}\right.\)
1. T= \(\frac{\pi}{\left|a\right|}=\frac{\pi}{3}\)
2. \(T_1=\frac{2\pi}{2}=\pi\) ; \(T_2=\frac{2\pi}{\frac{1}{2}}=4\pi\)
=> \(T=BCNN\left(\pi;4\pi\right)=4\pi\)
3. \(\left[{}\begin{matrix}5x-45^o=30^o+k360^o\\5x-45^o=-30^o+k360^o\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=75^o+k360^o\\5x=15^o+k360^o\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=15^o+k72^o\\x=3^0+k72^o\end{matrix}\right.\) \(\left(k\in Z\right)\)
Cho k=-1 thì x= -57 độ or x= -69 độ nên lấy x= -57 độ là no âm lớn nhất => Chọn C
4. Có pt hoành độ giao điểm của 2 đths : sinx = sin3x
\(\Leftrightarrow\left[{}\begin{matrix}3x=x+k2\pi\\3x=\pi-x+k2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.\left(k\in Z\right)\)
trong \(\left(\frac{-\pi}{2};\frac{3\pi}{2}\right)\) với \(x=k\pi\Rightarrow k\in\left\{0;1\right\}\)
với \(x=\frac{\pi}{4}+\frac{k\pi}{4}\Rightarrow k\in\left\{-1;0;1;2\right\}\)
Vậy 2 đths cắt nhau tại 6 điểm trong \(\left(\frac{-\pi}{2};\frac{3\pi}{2}\right)\)
5. cot = \(\sqrt{3}\) \(\Leftrightarrow tanx=\frac{1}{\sqrt{3}}\Leftrightarrow x=\frac{\pi}{6}+k\pi\left(k\in Z\right)\)
x \(\in\left[0;2017\pi\right]\Rightarrow k\in\left\{0;1;2;....;2015;2016\right\}\)
Vậy ptrinh có 2017 nghiệm.
CHÚC BẠN HỌC TỐT..!!
ngại viết quá hihi, mà hơi ngáo tí cái dạng này lm rồi mà cứ quên
bài trước mk bình luận bạn đọc chưa nhỉ
1.
\(m.tanx+\frac{1}{tanx}-3=0\)
\(\Leftrightarrow m.tan^2x-3tanx+1=0\)
Với \(m=0\) thỏa mãn
Với \(m\ne0\Rightarrow\Delta=9-4m\ge0\Rightarrow m\le\frac{9}{4}\)
Chắc đề đúng là "giá trị nguyên"? Như vậy có 2023 giá trị nguyên thỏa mãn
2.
Chắc đề đúng là khi \(x\in\left[\frac{\pi}{3};\frac{2\pi}{3}\right]\)
\(\Leftrightarrow2\left(1-cos^2x\right)-cosx+1-2m=0\)
\(\Leftrightarrow-2cos^2x-cosx+3=2m\)
Đặt \(cosx=t\Rightarrow-\frac{1}{2}\le t\le\frac{1}{2}\)
Xét hàm \(f\left(t\right)=-2t^2-t+3\) trên \(\left[-\frac{1}{2};\frac{1}{2}\right]\)
\(f\left(-\frac{1}{2}\right)=3\) ; \(f\left(\frac{1}{2}\right)=2\) ; \(f\left(-\frac{1}{4}\right)=\frac{25}{8}\)
\(\Rightarrow2\le2m\le\frac{25}{8}\Rightarrow1\le m\le\frac{25}{16}\)