Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
f(x) = -2x2 - 8x3 + x + 5 + 2x2 + 7x3 + 5 - 6x +x3
f(x) = -5x + 10
Ta có f(x) + g(x) = 0
(=) g(x) = - [f(x)]
(=) g(x) = 5x - 10
Vậy đa thức g(x) = 5x - 10
1.
\(\dfrac{GM}{AM}=\dfrac{2}{3}\)
\(\dfrac{AM}{AG}=\dfrac{3}{2}\)
A B C M G
f(x) + g(x)
= (x5 - 3x2 + 7x4 - 9x3 + x2 - 1/4x) + (5x4 - x5 +x2 - 2x3 + 3x2 - 1/4)
= x5 - 3x2 + 7x4 - 9x3 + x2 - 1/4x + 5x4 - x5 +x2 - 2x3 + 3x2 - 1/4
=12x4 - 11x3 + 2x2 - 1/4x - 1/4
f(x) - g(x)
= (x5 - 3x2 + 7x4 - 9x3 + x2 - 1/4x) - (5x4 - x5 +x2 - 2x3 + 3x2 - 1/4)
= = x5 - 3x2 + 7x4 - 9x3 + x2 - 1/4x - 5x4 + x5 - x2 + 2x3 - 3x2 + 1/4
= 2x5 + 2x4 - 7x3 - 6x2 - 1/4x + 1/4
a) f(x) = -x + 2x2 + 3x5 + 9/2
g(x) = 3x - 2x2 - 3x5 + 3
b) f(x) + g(x) = ( -x + 2x2 + 3x5 + 9/2 ) + ( 3x - 2x2 - 3x5 + 3 )
= ( -x + 3x ) + ( 2x2 - 2x2 ) + ( 3x5 - 3x5 ) + ( 9/2 + 3 )
= 2x + 15/2
c) Đặt h(x) = 2x + 15/2
Để h(x) có nghiệm <=> 2x + 15/2 = 0
<=> 2x = -15/2
<=> x = -15/4
Vậy nghiệm của h(x) là -15/4
Quỳnh chưa sắp xếp nhé !, sai bảo cj, cj sửa.
a, Ta có : \(f\left(x\right)=-x+2x^2-\frac{1}{2}+3x^5+5\)
\(=-x+2x^2+\frac{9}{2}+3x^5\)
Sắp xếp : \(f\left(x\right)=3x^5+2x^2-x+\frac{9}{2}\)
\(g\left(x\right)=3-x^5+\frac{1}{3}x^3+3x-2x^5-2x^2-\frac{1}{3}x^3\)
\(=3-3x^5+3x-2x^2\)
Sắp xếp : \(g\left(x\right)=-3x^5-2x^2+3x+3\)
b, \(f\left(x\right)+g\left(x\right)=\left(3x^5+2x^2-x+\frac{9}{2}\right)+\left(-3x^5-2x^2+3x+3\right)\)
\(=3x^5+2x^2-x+\frac{9}{2}-3x^5-2x^2+3x+3\)
\(=2x+\frac{15}{2}\)
c, \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)
Đặt f(x) + g(x) = 2x + 15/2 (đã có bên trên.)
Ta có : \(h\left(x\right)=2x+\frac{15}{2}=0\)
\(\Leftrightarrow2x+\frac{15}{2}=0\Leftrightarrow2x=-\frac{15}{2}\Leftrightarrow x=-\frac{15}{4}\)
bài 1
a) \(-\frac{1}{3}xy\).(3\(x^2yz^2\))
=\(\left(-\frac{1}{3}.3\right)\).\(\left(x.x^2\right)\).(y.y).\(z^2\)
=\(-x^3\).\(y^2z^2\)
b)-54\(y^2\).b.x
=(-54.b).\(y^2x\)
=-54b\(y^2x\)
c) -2.\(x^2y.\left(\frac{1}{2}\right)^2.x.\left(y^2.x\right)^3\)
=\(-2x^2y.\frac{1}{4}.x.y^6.x^3\)
=\(\left(-2.\frac{1}{4}\right).\left(x^2.x.x^3\right).\left(y.y^2\right)\)
=\(\frac{-1}{2}x^6y^3\)
Bài 3:
a) \(f\left(x\right)=-15x^2+5x^4-4x^2+8x^2-9x^3-x^4+15-7x^3\)
\(f\left(x\right)=\left(5x^4-x^4\right)-\left(9x^3+7x^3\right)-\left(15x^2+4x^2-8x^2\right)+15\)
\(f\left(x\right)=4x^4-16x^3-11x^2+15\)
b)
\(f\left(x\right)=4x^4-16x^3-11x^2+15\)
\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)
\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)
\(f\left(1\right)=-8\)
\(f\left(x\right)=4x^4-16x^3-11x^2+15\)
\(f\left(-1\right)=4\cdot\left(-1\right)^4-16\cdot\left(-1\right)^3-11\cdot\left(-1\right)^2+15\)
\(f\left(-1\right)=24\)
f(x)+g(x)=12x4-11x3+2x2-\(\frac{1}{4}\)x-\(\frac{1}{4}\)
Con f(x)-g(x) thi tru 2 da thuc tren cho nhau
a: \(f\left(x\right)+g\left(x\right)-h\left(x\right)\)
\(=5x^5-4x^4+3x^3-x^2-3x+4+x^5-2x^4+x^3-x+7\)
\(=6x^5-6x^4+4x^3-x^2-4x+11\)
f(x)-g(x)-h(x)
\(=15x^5-12x^4+9x^3-7x^2+7x+x^5-2x^4+x^3-x+7\)
\(=16x^5-14x^4+10x^3-7x^2+6x+7\)
b: f(x)+2g(x)=0
\(\Leftrightarrow10x^5-8x^4+6x^3-4x^2+2x+2-10x^5+8x^4-6x^3+6x^2-10x+4=0\)
\(\Leftrightarrow2x^2-8x+6=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
=>x=1 hoặc x=3
\(1.\frac{GM}{AM}=\frac{1}{2};\frac{AM}{AG}=\frac{2}{3}\)
\(2.F\left(x\right)=-5x+10\\ F\left(x\right)+G\left(x\right)=0\\ \Rightarrow-5x+10+G\left(x\right)=0\\ \Rightarrow G\left(x\right)=5x-10\)
Tích mik với bạn ơi