Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(P=\dfrac{a-1}{2\sqrt{a}}\cdot\left(\dfrac{\sqrt{a}\left(a-2\sqrt{a}+1\right)-\sqrt{a}\left(a+2\sqrt{a}+1\right)}{a-1}\right)\)
\(=\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{2}=-2\sqrt{a}\)
b: Để P>=-2 thì P+2>=0
\(\Leftrightarrow-2\sqrt{a}+2>=0\)
=>0<=a<1
P/s gọi a = x cho dễ viết nhé
a, Với \(x\ge0;x\ne1;x\ne4\)
\(P=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
\(=\left(\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-2}{3\sqrt{x}}\)
chỗ này mình nghĩ ko phải trục căn thức đâu ha :D
b, Ta có P > 1/6 hay \(\frac{\sqrt{x}-2}{3\sqrt{x}}>\frac{1}{6}\Leftrightarrow\frac{\sqrt[]{x}-2}{3\sqrt{x}}-\frac{1}{6}>0\)
\(\Leftrightarrow\frac{6\sqrt{x}-12-3\sqrt{x}}{18\sqrt{x}}>0\Leftrightarrow\frac{3\sqrt{x}-12}{18\sqrt{x}}>0\)
\(\Leftrightarrow3\sqrt{x}-12>0\)( vì \(18\sqrt{x}>0\))
\(\Leftrightarrow3\sqrt{x}>12\Leftrightarrow\sqrt{x}>4\Leftrightarrow x>16\)
Vậy \(x>16\)
cho mình hỏi đề có sai ko ? \(P< \frac{1}{6}\)mình nghĩ sẽ hợp lí hơn
んuリ イ hãy thuận theo ý thầy :)) và nhớ chú ý đến ĐKXĐ
\(P=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
ĐKXĐ : \(\hept{\begin{cases}x>0\\x\ne1\\x\ne4\end{cases}}\)
\(=\left(\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right)\div\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\div\left(\frac{a-1}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\frac{a-4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\div\frac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\times\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}=\frac{\sqrt{a}-2}{3\sqrt{a}}\)
Để P > 1/6 thì \(\frac{\sqrt{a}-2}{3\sqrt{a}}>\frac{1}{6}\)
<=> \(\frac{\sqrt{a}-2}{3\sqrt{a}}-\frac{1}{6}>0\)
<=> \(\frac{2\sqrt{a}-4}{6\sqrt{a}}-\frac{\sqrt{a}}{6\sqrt{a}}>0\)
<=> \(\frac{\sqrt{a}-4}{6\sqrt{a}}>0\)
Dễ thấy \(6\sqrt{a}>0\forall x>0\)
=> \(\sqrt{a}-4>0\)<=> \(\sqrt{a}>4\)<=> \(a>16\)
Vậy với a > 16 thì P > 1/6
Bài 1 : Rút gọn biểu thức :
\(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2\)
\(=\left(-10\sqrt{2}+10\right)-\left(18-30\sqrt{2}+25\right)\)
\(=\left(-10\sqrt{2}+10\right)-\left(7-30\sqrt{2}\right)\)
\(=-10\sqrt{2}+10-7+30\sqrt{2}\)
\(=20\sqrt{2}+3\)
Bài 2:
a) ĐKXĐ : x # 4 ; x # - 4
P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)
P =\(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
P = \(\dfrac{x+2\sqrt{x}+\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
P = \(\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
P = \(\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
b ) Để P = 2 \(\Leftrightarrow\dfrac{3\sqrt{x}}{\sqrt{x}+2}\) = 2
\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+4\)
\(\Leftrightarrow\sqrt{x}=4\)
\(\Leftrightarrow x=16\)
Vậy, để P = 2 thì x = 16.
Bài 1:
a: ĐKXĐ: 2x+3>=0 và x-3>0
=>x>3
b: ĐKXĐ:(2x+3)/(x-3)>=0
=>x>3 hoặc x<-3/2
c: ĐKXĐ: x+2<0
hay x<-2
d: ĐKXĐ: -x>=0 và x+3<>0
=>x<=0 và x<>-3
1. \(\left(1+\sqrt{2}+\sqrt{3}\right)\left(1+\sqrt{2}-\sqrt{3}\right)\)
\(=\left(1+\sqrt{2}\right)^2-\sqrt{3}^2\)
\(=1+2\sqrt{2}+2-3\)
\(=2\sqrt{2}\)
3. \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)(1)
ĐKXĐ \(x>0,x\ne1\)
pt (1) <=> \(\left(\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\right)\cdot\left(\dfrac{\sqrt{x}+1}{\sqrt{x}}\right)\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right)\cdot\left(\sqrt{x}+1+\sqrt{x}-1\right)}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}}\)
\(\Leftrightarrow\dfrac{\sqrt{x}\cdot2}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}\)
b) Để \(\sqrt{A}>A\Leftrightarrow\sqrt{\dfrac{2}{\sqrt{x}-1}}>\dfrac{2}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}>\dfrac{4}{x-2\sqrt{x}+1}\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}-\dfrac{4}{x-2\sqrt{x}+1}>0\)
\(\Leftrightarrow\dfrac{2\cdot\left(\sqrt{x}-1\right)-4}{x-2\sqrt{x}+1}>0\)
\(\Leftrightarrow\dfrac{2\sqrt{2}-2-4}{x-2\sqrt{x}+1}>0\)
\(\Leftrightarrow\dfrac{2\sqrt{2}-6}{x-2\sqrt{x}+1}>0\)
Vì \(2\sqrt{2}-6< 0\Rightarrow x-2\sqrt{x}+1< 0\)
mà \(x-2\sqrt{x}+1=\left(\sqrt{x}-1\right)^2\ge0\forall x\)
Vậy không có giá trị nào của x thỏa mãn \(\sqrt{A}>A\)
(P/s Đề câu b bị sai hay sao vậy, chả có số nào mà \(\sqrt{A}>A\) cả, check lại đề giùm với nhé)
\(A=1+\left(\dfrac{2a+\sqrt{a}-1}{1-a}-\dfrac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right).\dfrac{a-\sqrt{a}}{2\sqrt{a}-1}\\ =1+\left(\dfrac{2a+2\sqrt{a}-\sqrt{a}-1}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\dfrac{2a\sqrt{a}-\sqrt{a}+a}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}\right).\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\dfrac{2\sqrt{a}-1+2a+2a\sqrt{a}-a-2a\sqrt{a}+\sqrt{a}-a}{-\left(\sqrt{a}-1\right)\left(1+\sqrt{a}+a\right)}\)
\(=1+\dfrac{2\sqrt{a}-1+0}{1+\sqrt{a}+a}.\dfrac{\sqrt{a}\left(-1\right)}{2\sqrt{a}-1}\\ =1+\dfrac{1}{1+\sqrt{a}+a}.\sqrt{a}.\left(-1\right)\)
\(=1-\dfrac{\sqrt{a}}{1+\sqrt{a}+a}\\ =\dfrac{1+\sqrt{a}+a-\sqrt{a}}{1+\sqrt{a}+a}\\ =\dfrac{1+a}{1+\sqrt{a}+a}\)
1/ đkxđ: a > 0; a khác 1
a/ A= (\(\dfrac{\sqrt{a}}{2\sqrt{a}}-\dfrac{1}{2\sqrt{a}}\))\(\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
\(=\dfrac{\sqrt{a}-1}{2\sqrt{a}}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)^2-\sqrt{a}\left(\sqrt{a}+1\right)^2}{a-1}\)
\(=\dfrac{1}{2\sqrt{a}}\cdot\dfrac{a\sqrt{a}-2a+\sqrt{a}-a\sqrt{a}-2a-\sqrt{a}}{a-1}\)
\(=\dfrac{1}{2\sqrt{a}}\cdot\dfrac{-4a}{a-1}=-\dfrac{2\sqrt{a}}{a-1}=\dfrac{2\sqrt{a}}{a+1}\)
b/+) A = 4
\(\Leftrightarrow\dfrac{2\sqrt{a}}{a+1}=4\)\(\Leftrightarrow2\sqrt{a}=4a+4\)
=> Không có gt a nào t/m
+) \(A>-6\)
\(\Leftrightarrow\dfrac{2\sqrt{a}}{a+1}>-6\)
\(\Leftrightarrow2\sqrt{a}>-6a-6\)
\(\Leftrightarrow6a+2\sqrt{a}+6>0\) (luôn đúng vì a > 0)
=> bpt có nghiệm với mọi a > 0
vậy........
c/ \(a^2-3=0\Leftrightarrow\left[{}\begin{matrix}a=\sqrt{3}\left(tm\right)\\a=-\sqrt{3}\left(ktmđkxđ\right)\end{matrix}\right.\)
Với a = \(\sqrt{3}\) ta có:
\(A=\dfrac{2\sqrt{3}}{\sqrt{3}+1}=\dfrac{2\sqrt{3}\left(\sqrt{3}-1\right)}{3-1}=\dfrac{2\sqrt{3}\left(\sqrt{3}-1\right)}{2}=\sqrt{3}\left(\sqrt{3}-1\right)=3-\sqrt{3}\)
1.Đường thẳng \(y=ax-1\) đi qua điểm \(M\left(-1;1\right)\) khi và chỉ khi \(1=a\left(-1\right)-1\)\(\Leftrightarrow a=-2\)
Vậy \(a=-2\)
2.a,\(P=\dfrac{a-1}{2\sqrt{a}}.\dfrac{\left(a-\sqrt{a}\right)\left(\sqrt{a}-1\right)-\left(a+\sqrt{a}\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{\left(a-1\right)\left(a\sqrt{a}-a-a+\sqrt{a}-a\sqrt{a}-a-a-\sqrt{a}\right)}{2\sqrt{a}\left(a-1\right)}\)
\(=\dfrac{-4\sqrt{a}.\sqrt{a}}{2\sqrt{a}}\)
\(=-2\sqrt{a}\)
Vậy P=\(-2\sqrt{a}\)
b, Ta có \(P\ge-2\Leftrightarrow-2\sqrt{a}\ge-2\Leftrightarrow\sqrt{a}\le1\Leftrightarrow0\le a\le1\)
Kết hợp với điều kiện để P có nghĩa, ta có \(0< a< 1\)
Vậy \(P\ge-2\sqrt{a}\) khi và chỉ khi \(0< a< 1\)
-Chúc bạn học tốt-