Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x là số công nhân \(\left(ĐK:x>3\right)\)
Số sản phẩm mỗi người làm ban đầu là \(\frac{360}{x}\)
Số người sau khi chuyển là x - 3
Số sản phẩm mỗi người phải làm lúc sau là \(\frac{360}{x-3}\)
Theo đề , ta có
\(\frac{360}{x-3}-\frac{360}{x}=4\)
\(\frac{360}{x-3}-\frac{360}{x}-4=0\)
\(\frac{360\cdot x-360\cdot\left(x-3\right)-4\cdot x\cdot\left(x-3\right)}{x\cdot\left(x-3\right)}=0\)
\(360\cdot x-360\cdot\left(x-3\right)-4\cdot x\cdot\left(x-3\right)=0\)
\(360x-360x+1080-4x^2+12x=0\)
\(-4x^2+12x+1080=0\)
\(\orbr{\begin{cases}x=18\left(n\right)\\x=\left(-15\right)\left(l\right)\end{cases}}\)
Vậy lúc đầu tổ đó có 18 công nhân
gọi số dụng cụ mỗi người cần làm theo dự định là x (cái) (x thuộc N*)
=>số công nhân lúc đầu là 144/x (người)
số dụng cụ thực tế mỗi công nhân phải làm: x+4 (cái)
số công nhân thực tế làm: 144/(x+4) (người)
theo bài ra:. Khi bắt đầu làm việc có 3 công nhân phải chuyển sang làm việc khác nên mỗi người còn lại phải làm thêm 4 dụng cụ nữa
=> 144/x-144/(x+4)=3
đến đây giải nhá
hoặc là làm cách gọi số công nhân là x đi rồi biểu diễn theo,tớ lười ko muốn sửa =))
Gọi số công nhân lúc đầu là x (người) và số sản phẩm mỗi công nhân dự tính làm được lúc đầu là y (sản phẩm) (x, y > 0)
Theo dự tính lúc đầu: xy = 360 (*)
Khi điều 3 công nhân đi và mỗi công nhân còn lại phải làm nhiều hơn dự định 4 sản phẩm, ta có phương trình: (x-3)(y + 4) = 360
=> xy + 4x - 3y - 12 = 360. Thay (*) vào ta được:
=> xy + 4x - 3y - 12 = xy
=> 4x - 3y = 12 => x = \(\dfrac{12+3y}{4}\). Thay x vào (*) ta được:
\(\dfrac{12+3y}{4}y\) = 360
12y + 3y2 = 1440
y2 + 4y - 480 = 0
(y+2)2 = 484
y + 2 = 22 hoặc y + 2 = -22 (loại vì y > 0)
y = 20
suy ra x = 18
Vậy, số công nhân lúc dầu là 18 người.
Bài 21:
Gọi x (sản phẩm/giờ) là năng suất dự kiến ban đầu của người đó \(\left(x\inℕ^∗\right)\)
=> x + 2 (sản phẩm/giờ) là năng suất lúc sau của người đó
Theo bài ta có phương trình sau:
\(\frac{150}{x}-\frac{1}{2}-2=\frac{150-2x}{x+2}\)
\(\Leftrightarrow300\left(x+2\right)-x\left(x+2\right)-4x\left(x+2\right)=2\left(150-2x\right)x\)
\(\Leftrightarrow300x+600-x^2-2x-4x^2-8x=300x-4x^2\)
\(\Leftrightarrow x^2+10x-600=0\)
\(\Leftrightarrow\left(x-20\right)\left(x+30\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-20=0\\x+30=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=20\left(tm\right)\\x=-30\left(ktm\right)\end{cases}}\)
Vậy ban đầu năng suất người đó là 20 (sản phẩm/giờ)
Bài 22:
Gọi x (sản phẩm/giờ) là năng suất dự kiến của người đó \(\left(x\inℕ^∗;x< 20\right)\)
=> x + 1 (sản phẩm/giờ) là năng suất lúc sau của người đó
Theo bài ra ta có phương trình:
\(\frac{80}{x+1}-\frac{1}{5}=\frac{72}{x}\)
\(\Leftrightarrow400x-x\left(x+1\right)=360\left(x+1\right)\)
\(\Leftrightarrow400x-x^2-x=360x+360\)
\(\Leftrightarrow x^2-39x+360=0\)
\(\Leftrightarrow\left(x-15\right)\left(x-24\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-15=0\\x-24=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=15\left(tm\right)\\x=24\left(ktm\right)\end{cases}}\)
Vậy năng suất ban đầu là 15 sp/giờ