\(A=3^{100}+3^{99}+3^{98}+3^{97}+...+3^2+3+1\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

Bài 1:

a, \(A=3^{100}+3^{99}+...+3+1\)

\(\Rightarrow3A=3^{101}+3^{100}+...+3^2+3\)

\(\Rightarrow3A-A=\left(3^{101}+3^{100}+...+3^2+3\right)-\left(3^{100}+3^{99}+...+3+1\right)\)

\(\Rightarrow2A=3^{101}+1\Rightarrow A=\dfrac{3^{101}+1}{2}\)

b, \(B=\dfrac{15^9.2^{18}.9^8}{3^{15}.4^8.25^4}=\dfrac{3^9.5^9.2^{18}.3^{16}}{3^{15}.2^{16}.5^8}\)

\(=3^{10}.5.2^2=472392\)

c, \(C=\dfrac{2^{10}.10^{17}.7^9}{5^{15}.14^9.64^9}=\dfrac{2^{10}.2^{17}.5^{17}.7^9}{5^{15}.2^9.7^9.2^{54}}\)

\(=\dfrac{5^2}{2^{36}}\)

Chúc bạn học tốt!!!

17 tháng 7 2017

1.

\(A=3^{100}+3^{99}+3^{98}+...+3^2+3+1\\ A=\dfrac{3-1}{2}\cdot\left(3^{100}+3^{99}+3^{98}+...+3^2+3+1\right)\\ =\dfrac{\left(3-1\right)\cdot\left(3^{100}+3^{99}+3^{98}+...+3^2+3+1\right)}{2}\\ =\dfrac{3^{101}-3^{100}+3^{100}-3^{99}+...+3^2-3+3-1}{2}\\ =\dfrac{3^{101}-1}{2}\)

\(B=\dfrac{15^9\cdot2^{18}\cdot9^8}{3^{15}\cdot4^8\cdot25^4}\\ =\dfrac{\left(3\cdot5\right)^9\cdot2^{18}\cdot\left(3^2\right)^8}{3^{15}\cdot\left(2^2\right)^8\cdot\left(5^2\right)^4}\\ =\dfrac{3^9\cdot5^9\cdot2^{18}\cdot3^{16}}{3^{15}\cdot2^{16}\cdot5^8}\\ =\dfrac{3^9\cdot5\cdot2^2\cdot3}{1\cdot1\cdot1}\\ =3^{10}\cdot5\cdot2^2\\ =59049\cdot5\cdot4\\ =59049\cdot\left(5\cdot4\right)\\ =59049\cdot20\\ =1180980\)

\(C=\dfrac{2^{10}\cdot10^{17}\cdot7^9}{5^{15}\cdot14^9\cdot64^9}\\ =\dfrac{2^{10}\cdot\left(2\cdot5\right)^{17}\cdot7^9}{5^{15}\cdot\left(2\cdot7\right)^9\cdot\left(2^6\right)^9}\\ =\dfrac{2^{10}\cdot2^{17}\cdot5^{17}\cdot7^9}{5^{15}\cdot2^9\cdot7^9\cdot2^{54}}\\ =\dfrac{2\cdot1\cdot5^2\cdot1}{1\cdot1\cdot1\cdot2^{37}}\\ =\dfrac{5^2}{2^{36}}\\ =\dfrac{25}{2^{36}}\)

16 tháng 10 2018

\(B=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{98}+\left(\dfrac{1}{2}\right)^{99}\)

\(\Rightarrow2B=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{97}+\left(\dfrac{1}{2}\right)^{98}\)

\(\Rightarrow2B-B=1-\left(\dfrac{1}{2}\right)^{99}\)

\(B=1-\left(\dfrac{1}{2}\right)^{99}\)

\(2,\)

\(a,\dfrac{45^{10}.2^{10}}{75^{15}}\)

\(=\dfrac{5^{10}.9^{10}.2^{10}}{25^{15}.3^{15}}\)

\(=\dfrac{5^{10}.3^{20}.2^{10}}{5^{30}.3^{15}}\)

\(=\dfrac{5^{10}.3^{15}.\left(3^5.2^{10}\right)}{5^{10}.3^{15}.\left(5^{20}\right)}\)

\(=\dfrac{3^5.2^{10}}{5^{20}}\)

\(b,\dfrac{2^{15}.9^4}{6^3.8^3}\)

\(=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)

\(c,\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{4^{10}.2^{10}+4^{10}}{4^4.2^4+4^4.4^7}=\dfrac{4^4.\left(4^6.2^{10}+4^6\right)}{4^4.\left(2^4+4^7\right)}\)

\(=\dfrac{4^{11}+4^6}{4^8.4^7}=\dfrac{4^6.\left(4^5+1\right)}{4^6.\left(4^2-4\right)}=\dfrac{1024+1}{16-4}=\dfrac{1025}{12}\)

\(d,\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)

\(3,\)

\(a,\left(2x+4\right)^2=\dfrac{1}{4}\)

\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2=\left(\dfrac{-1}{2}\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}2x+4=\dfrac{1}{2}\\2x+4=\dfrac{-1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{2}-4=\dfrac{-7}{2}\\2x=\dfrac{-1}{2}-4=\dfrac{-9}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-7}{4}\\x=\dfrac{-9}{4}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{-7}{4};\dfrac{-9}{4}\right\}\)

\(b,\left(2x-3\right)^2=36\)

\(\left(2x-3\right)^2=6^2=\left(-6\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=6+3=9\\2x=-6+3=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{9}{2};\dfrac{-3}{2}\right\}\)

\(c,5^{x+2}=628\)

\(5^{x+2}=5^4\)

\(\Rightarrow x+2=4\)

\(\Rightarrow x=4-2=2\)

Vậy \(x=2\)

\(d,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)

\(\Rightarrow\left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\)

\(\Rightarrow\left(x-1\right)^{x+2}.\left[\left(x-1\right)^2-1\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^2-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x-1=1\\x-1=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)

Vậy \(x\in\left\{0;1;2\right\}\)

16 tháng 10 2018

Bài 1:

B= \(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{99}\)

2B= \(2.[\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{99}]\)

2B= \(1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{98}\)

⇒2B-B= \(1-\left(\dfrac{1}{2}\right)^{99}\)

B= 1

Vậy B=1

Bài 2:

a, \(\dfrac{45^{10}.2^{10}}{75^{15}}\)= \(\dfrac{\left(3^2.5\right)^{10}.2^{10}}{\left(3.5^2\right)^{15}}=\dfrac{3^{20}.5^{10}.2^{10}}{3^{15}.5^{30}}=\dfrac{3^5.2^{10}}{5^{20}}\)

b, \(\dfrac{2^{15}.9^4}{6^3.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^3.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)

c,\(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2.4\right)^{10}+4^{10}}{\left(2.4\right)^4+4^{11}}=\dfrac{2^{10}.4^{10}+4^{10}}{2^4.4^4+4^{11}}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6+4^6.4^5}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(4^5+1\right)}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(2^{10}+1\right)}=4^4=256\)

d, \(\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{\left(3^4\right)^{11}.3^{17}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)

Bài 3:

a, \(\left(2x+4\right)^2=\dfrac{1}{4}\)

\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2\)

\(2x+4=\dfrac{1}{2}\)

\(2x=\dfrac{1}{2}-4\)

\(2x=-\dfrac{7}{2}\)

\(x=-\dfrac{7}{2}:2\)

\(x=-\dfrac{7}{2}.\dfrac{1}{2}\)

\(x=-\dfrac{7}{4}\)

b, \(\left(2x-3\right)^2=36\)

\(\left(2x-3\right)^2=6^2\)

\(2x-3=6\)

\(2x=9\)

\(x=\dfrac{9}{2}\)

c, \(5^{x+2}=625\)

\(5^{x+2}=5^4\)

\(x+2=4\)

\(x=2\)

23 tháng 6 2018

1,

\(\left(2x+1\right)^3=-0,001\\ \left(2x+1\right)^3=\left(-0.1\right)^3\\ \Leftrightarrow2x+1=-0.1\\ 2x=-1.1\\ x=-\dfrac{11}{10}:2\\ x=-\dfrac{11}{20}\\ Vậy...\)

2,

\(\left(2x-3\right)^4=\left(2x-3\right)^6\\ \Leftrightarrow\left(2x-3\right)^6-\left(2x-3\right)^4=0\\ \Leftrightarrow\left(2x-3\right)^4\cdot\left[\left(2x-3\right)^2-1\right]=0\\ \Rightarrow\left\{{}\begin{matrix}\left(2x-3\right)^4=0\\\left(2x-3\right)^2-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x-3=0\\\left(2x-3\right)^2=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x=3\\2x-3=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\x=2\end{matrix}\right.\\ Vậyx\in\left\{\dfrac{3}{2};2\right\}\)

3, Làm tương tự câu 2

5,

\(9^x:3^x=3\\ \left(9:3\right)^x=3\\ 3^x=3\\ \Rightarrow x=1\\ Vậy...\)

6,

\(3^x+3^{x+3}=756\\ 3^x+3^x\cdot3^3\\ 3^x\cdot\left(1+27\right)=756\\ 3^x\cdot28=756\\ \Leftrightarrow3^x=27\\ 3^x=3^3\\ \Rightarrow x=3\\ vậy...\)

7,

\(5^{x+1}+6\cdot5^{x+1}=875\\ 5^{x+1}\cdot\left(1+6\right)=875\\ 5^{x+1}\cdot7=875\\ \Leftrightarrow5^{x+1}=125\\ \Leftrightarrow5^{x+1}=5^3\Leftrightarrow x+1=3\\ \Rightarrow x=2\\ Vậy...\)

9,

23 tháng 6 2018

lê thị hồng vân trả lời típ đikhocroi

28 tháng 12 2017

Bài 5: GTNN chứ nhỉ?

Với mọi gt của \(x;y\in R\) ta có:

\(x^2+3\left|y-2\right|+1\ge1\)

Hay \(A\ge1\) với mọi gt của \(x;y\in R\)

Dấu "=" sảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

Vậy..................

Bài 6: GTLN chứ?

Với mọi giá trị của \(x\in R\) ta có:

\(-\left(2x-1\right)^2\le0\Rightarrow-5-\left(2x-1\right)^2\le-5\)

Hay \(B\le5\) với mọi giá trị của \(x\in R\)

Dấu "=" sảy ra khi và chỉ khi \(x=\dfrac{1}{2}\)

Vậy...................

28 tháng 12 2017

Bài 4 :

\(a,3^{15}-9^6=3^{15}-\left(3^2\right)^6=3^{15}-3^{12}=3^{12}\left(3^3-1\right)=3^{12}.26=3^{12}.2.13⋮\left(đpcm\right)\)

\(b,8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{18}\left(2^3-1\right)=2^{18}.7=2^{17}.2.7=2^{17}.14⋮14\left(đpcm\right)\)

Bài 5 :

\(A=1^2+3^2+6^2+9^2+.............+39^2\)

\(=1+3^2+\left(6^2+9^2+.........+39^2\right)\)

\(=10+3^2\left(2^2+3^2+.........+13^2\right)\)

\(=10+3^2.818\)

\(=10+9.818\)

\(=7372\)

Bài 1: Thực hiện các phép tính dau bằng cách hợp lía. \(\frac{11}{225}-\frac{17}{18}-\frac{5}{7}+\frac{4}{9}+\frac{17}{14}\)b. \(1-\frac{1}{2}+2-\frac{2}{3}+3-\frac{3}{4}+4-\frac{1}{4}-3-\frac{1}{3}-2-\frac{1}{2}-1\)Bài 2: Tìm x biếta. \(\frac{11}{13}-\left(\frac{5}{42}-x\right)=-\left(\frac{15}{28}-\frac{11}{13}\right)\)b. \(\left|x+\frac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)Bài 3: Thực hiện các phép tính sau bằng cách hợp lí...
Đọc tiếp

Bài 1: Thực hiện các phép tính dau bằng cách hợp lí

a. \(\frac{11}{225}-\frac{17}{18}-\frac{5}{7}+\frac{4}{9}+\frac{17}{14}\)

b. \(1-\frac{1}{2}+2-\frac{2}{3}+3-\frac{3}{4}+4-\frac{1}{4}-3-\frac{1}{3}-2-\frac{1}{2}-1\)

Bài 2: Tìm x biết

a. \(\frac{11}{13}-\left(\frac{5}{42}-x\right)=-\left(\frac{15}{28}-\frac{11}{13}\right)\)

b. \(\left|x+\frac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)

Bài 3: Thực hiện các phép tính sau bằng cách hợp lí nhất

a. \(\left(-\frac{40}{51}\cdot0,32\cdot\frac{17}{20}\right):\frac{64}{75}\)

b. \(-\frac{10}{11}\cdot\frac{8}{9}+\frac{7}{18}\cdot\frac{10}{11}\)

c. \(\frac{3}{14}:\frac{1}{28}-\frac{13}{21}:\frac{1}{28}+\frac{29}{42}-8\)

d. \(-1\frac{5}{7}\cdot15+\frac{2}{7}.\left(-15\right)+\left(-105\right).\left(\frac{2}{3}-\frac{4}{5}+\frac{1}{7}\right)\)

Bìa 4: Tính giá trị của các biểu thức sau

a. \(A=7x-2x-\frac{2}{3}y+\frac{7}{9}y\) với \(x=-\frac{1}{10};y=4,8\)

b. \(B=x+\frac{0,2-0,375+\frac{5}{11}}{-0,3+\frac{9}{16}-\frac{15}{22}}\) với\(x=-\frac{1}{3}\)

0
14 tháng 7 2017

cứ phan tích cho hết đi là đc 9^6. 9^10 = (3^2)^6...................

tự làm đi

14 tháng 7 2017

1. Tính:

a. \(\dfrac{9^6.9^{10}}{3^{32}}=\dfrac{\left(3^2\right)^6.\left(3^2\right)^{10}}{3^{32}}=\dfrac{3^{12}.3^{20}}{3^{32}}=\dfrac{3^{32}}{3^{32}}=1\)

b. \(\dfrac{25^8.25^{10}}{5^{34}}=\dfrac{\left(5^2\right)^8.\left(5^2\right)^{10}}{5^{34}}=\dfrac{5^{16}.5^{20}}{5^{34}}=\dfrac{5^{36}}{5^{34}}=5^{36}:5^{34}=5^2=25\)

c. \(\dfrac{7^{56}}{49^9.49^{20}}=\dfrac{7^{56}}{\left(7^2\right)^9.\left(7^2\right)^{20}}=\dfrac{7^{56}}{7^{18}.7^{40}}=\dfrac{7^{56}}{7^{58}}=7^{56}:7^{58}=\dfrac{7^{56}}{7^{56}.7^2}=\dfrac{1}{7^2}=\dfrac{1}{49}\)

d. \(\dfrac{4^2.4^3}{2^{10}}=\dfrac{\left(2^2\right)^2.\left(2^2\right)^3}{2^{10}}=\dfrac{2^4.3^6}{2^{10}}=\dfrac{2^{10}}{2^{10}}=1\)

e. \(\dfrac{2^{17}.25^5}{10^8.8^3}=\dfrac{2^{17}.\left(5^2\right)^5}{\left(2.5\right)^8.\left(2^3\right)^3}=\dfrac{2^{17}.5^{10}}{2^8.5^8.2^9}=\dfrac{2^{17}.5^{10}}{2^{17}.5^8}=\dfrac{5^{10}}{5^8}=5^{10}:5^8=5^2=25\)

f. \(\dfrac{3^{15}.25^4}{15^6.27^3}=\dfrac{3^{15}.\left(5^2\right)^4}{\left(3.5\right)^6.\left(3^3\right)^3}=\dfrac{3^{15}.5^8}{5^6.3^6.3^9}=\dfrac{3^{15}.5^8}{5^6.3^6.3^9}=\dfrac{5^8}{5^6}=5^8:5^6=5^2=25\)

2. Tính lũy thừa âm:

a. 3-2 = \(\dfrac{1}{3^2}\) = \(\dfrac{1}{9}\)

b. 2-3 = \(\dfrac{1}{2^3}\) = \(\dfrac{1}{8}\)

3. Tính :

a. \(\dfrac{\left(0,8\right)^4}{\left(0,4\right)^3}=\dfrac{\left(0,8\right)^3.0,8}{\left(0,4\right)^3}=\left(\dfrac{0,8}{0,4}\right)^3.0,8=2^3.0,8=8.0,8=6,4\)

b. \(\dfrac{\left(0,8\right)^3}{\left(0,4\right)^4}=\dfrac{\left(0,8\right)^3}{\left(0,4\right)^3:0,4}=\left(\dfrac{0,8}{0,4}\right)^3.\dfrac{1}{0,4}=2^3.2,5=8.2,5=20\)

c. \(\dfrac{\left(0,6\right)^5}{\left(0,2\right)^6}=\dfrac{\left(0,6\right)^5}{\left(0,2\right)^5.\left(0,2\right)}=\left(\dfrac{\left(0,6\right)}{\left(0,2\right)}\right)^5.\dfrac{1}{0,2}=3^5.\dfrac{1}{0,2}=\dfrac{3^5}{0,2}=1215\)

P/s : Chế Mai Ngọc Trâm thử tham khảo thử đi!!!

23 tháng 11 2017

Bài 4 câu c) và x-y+y hay x-y+z vậy bạn

24 tháng 11 2017

1 a) \(\dfrac{\left(-2\right)}{5}\)= \(\dfrac{-6}{15}\); \(\dfrac{15}{-6}\)= \(\dfrac{5}{-2}\); \(\dfrac{-6}{-2}\)= \(\dfrac{15}{5}\); \(\dfrac{-2}{-6}\)= \(\dfrac{5}{15}\)

20 tháng 12 2018

c. \(\dfrac{x+2}{-20}=\dfrac{-5}{x+2}\)

\(\Rightarrow\) x +2 . x + 2 = -5 . (- 20)

\(\left(x+2^{ }\right)^2\) = 100

\(\left(x+2^{ }\right)^2\) =\(10^2\)

\(\Rightarrow\) x + 2 = 10

x = 10 - 2

x = 8

Vậy x = 8

(Tick mk nha !!!)

20 tháng 12 2018

d.-10+ (2x + 5)3 =17

(2x +5)3 =17-(-10)

(2x +5)3 =27

(2x +5)3 =33

suy ra 2x +5 =3

2x =3-5

2x =-2

x =-2/2=-1

ko có dấu suy ra

8 tháng 12 2018

Cậu không làm được hay cần gấp con nào nhỉ ?

Bài 1:

a: \(\Leftrightarrow\dfrac{x+2}{2}=x-5\)

=>2x-10=x+2

=>x=12

b: \(\Leftrightarrow\left(x+2\right)^2=100\)

=>x+2=10 hoặc x+2=-10

=>x=-12 hoặc x=8

c: \(\Leftrightarrow\left(2x-5\right)^3=27\)

=>2x-5=3

=>2x=8

=>x=4