Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(2^8.2.4=2^9.2^2=2^{11}\)
b) \(8^5:64=8^5:8^2=8^3\)
c) \(3^7:9=3^7:3^2=3^5\)
d) \(9^{17}.81=9^{17}.9^2=9^{19}\)
e) \(x^6.x.x^2=x^9\)
Bài 2:
a) \(2^x-15=17\)
\(\Rightarrow2^x=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
Vậy x = 5
b) \(2.3^x=162\)
\(3^x=162:2\)
\(3^x=81\)
\(\Rightarrow3^x=3^4\)
\(\Rightarrow x=4\)
Vậy x = 4
c) \(5.x.5^2=10\)
\(\Rightarrow x.5^3=10\)
\(\Rightarrow x.125=10\)
\(\Rightarrow x=10:125\)
\(\Rightarrow x=\frac{2}{25}\)
Vậy \(x=\frac{2}{25}\)
d) \(5.x^2-1=124\)
\(\Rightarrow5.x^2=125\)
\(\Rightarrow x^2=125:5\)
\(\Rightarrow x^2=5^2\)
\(\Rightarrow x=\pm5\)
Vậy \(x=\pm5\)
Câu 1:
a)28.2.4=28.2.22=211
b)85:64=85:82=83
c)37:9=37:32=35
d)917.81=917.92=919
e)x6.x.x2=x9
Ta có
\(M=\left(5+5^2\right)+5^2\left(5+5^2\right)+......+5^{98}\left(5+5^2\right)+5^{101}\)
Dễ thấy \(\left(5+5^2\right)+5^2\left(5+5^2\right)+......+5^{98}\left(5+5^2\right)\) chia hết cho 10 và có chứ số tận cùng là 0
5101 có chữ số tận cùng là 5
=> M có tân cùng là 5
=>c=5 (1)
Mặt khác
\(\overline{abcd}⋮26\Rightarrow\overline{ab0d}⋮25\)
=> d =0 để thỏa mãn diều kiện (2)
Ta có
\(\overline{ab}=a+b^2\)
\(\Rightarrow10a+b=a+b^2\)
\(\Rightarrow9a=b\left(b-1\right)\)
Mà \(\left(b;b-1\right)=1\)
=>\(\Rightarrow\left[\begin{array}{nghiempt}b⋮9\\b-1⋮9\end{array}\right.\)
Xét điều kiện của b
\(0\le b\le9\)
Ta thấy từ 1 đến 9 chỉ có 9 chia hết cho 9
\(\Rightarrow\left[\begin{array}{nghiempt}b=9\\b-1=9\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}b=9\left(TM\right)\\b=10\left(KTM\right)\end{array}\right.\)
=> b=9 (3)
=>9a=9
=>a=1 (4)
Từ (1);(2);(3) và (4)
=>\(\overline{abcd}=1950\)
A=2+22+23+24+...+212
A=(2+22+23)+(24+25+26)+...+(210+211+212)
A=14.1+23.14+...+29.14
A=14(1+23+...+29)\(⋮\)7
Vậy A\(⋮\)7
\(A=2\left(1+2+2^2\right)+...+2^{10}\left(1+2+2^2\right)=7\cdot\left(2+...+2^{10}\right)⋮7\)
\(A=2+2^2+2^3+....+2^{12}\\ \Rightarrow A=\left(2+2^2+2^3\right)+.....+\left(2^{10}+2^{11}+2^{12}\right)\\ \Rightarrow A=2.\left(1+2+2^2\right)+....+2^{10}\left(1+2+2^2\right)\)
\(\Rightarrow A=2.7+....+2^{10}.7\\ \Rightarrow A=7\left(2+....+2^{10}\right)⋮7\)
Bài 1:
\(=\left(15+47\right)\cdot42+42\cdot38=42\left(15+47+38\right)=42\cdot100=4200\)
Bài 2:
a: \(\Leftrightarrow3^x\left(1+3+3^2\right)=39\)
\(\Leftrightarrow3^x=3\)
hay x=1
b: \(\Leftrightarrow x^{2016}\left(1-x\right)=0\)
hay \(x\in\left\{0;1\right\}\)