Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\frac{1}{25\cdot27}+\frac{1}{27\cdot29}+...+\frac{1}{73\cdot75}\)
\(E=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\right)\)
\(\Rightarrow E=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{75}\right)=\frac{1}{2}\cdot\frac{2}{75}=\frac{1}{75}\)
\(F=\frac{15}{90\cdot94}+\frac{15}{94\cdot98}+...+\frac{15}{146\cdot150}\)
\(F=\frac{15}{4}\cdot\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+...+\frac{1}{146}-\frac{1}{150}\right)\)
\(\Rightarrow F=\frac{15}{4}\cdot\left(\frac{1}{90}-\frac{1}{150}\right)=\frac{15}{4}\cdot\frac{1}{225}=\frac{1}{60}\)
\(G=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
\(G=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(G=\frac{5}{4\cdot7}+\frac{5}{7\cdot10}+\frac{5}{10\cdot13}+...+\frac{5}{25\cdot28}\)
\(G=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(\Rightarrow G=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{28}\right)=\frac{5}{3}\cdot\frac{3}{14}=\frac{5}{14}\)
a ) 15 / 90 x 94 + 15 / 94 x 98 + 15 / 98 x102+...+ 15 / 146 x 150
= 15/4 x ( 4/90 x 94 + 4/94 x 98 + ... + 4/ 146 x 150 )
= 15/4 x ( 1/90 - 1/94 + 1/94 - 1/98 + ... + 1/146 - 1/150 )
= 15/4 x ( 1/90 - 1/150 )
= 15/4 x 2/450
= 1/60
b ) 10 / 56 + 10/ 140 + 10 / 260+...+ 10 /1400
= 5/28 + 5/70 + 5/130 + ... + 5/700
= 5/4 x 7 + 5/7 x 10 + 5/10 x 13 + ... + 5 /25 x 28
= 5/3 x ( 3/4 x 7 + 3/7 x 10 + ... + 3/25 x 28 )
= 5/3 x ( 1/4 - 1/7 + 1/7 - 1/10 + ... + 1/25 - 1/28 )
= 5/3 x ( 1/4 - 1/28 )
= 5/3 x 6/28
= 5/14
ngài kiệt lí đây gian lận tuyệt vời.
vĩ đại như nước trong nguồn chảy ra.
a ) 15 / 90 x 94 + 15 / 94 x 98 + 15 / 98 x102+...+ 15 / 146 x 150
= 15/4 x ( 4/90 x 94 + 4/94 x 98 + ... + 4/ 146 x 150 )
= 15/4 x ( 1/90 - 1/94 + 1/94 - 1/98 + ... + 1/146 - 1/150 )
= 15/4 x ( 1/90 - 1/150 )
= 15/4 x 2/450
= 1/60
b ) 10 / 56 + 10/ 140 + 10 / 260+...+ 10 /1400
= 5/28 + 5/70 + 5/130 + ... + 5/700
= 5/4 x 7 + 5/7 x 10 + 5/10 x 13 + ... + 5 /25 x 28
= 5/3 x ( 3/4 x 7 + 3/7 x 10 + ... + 3/25 x 28 )
= 5/3 x ( 1/4 - 1/7 + 1/7 - 1/10 + ... + 1/25 - 1/28 )
= 5/3 x ( 1/4 - 1/28 )
= 5/3 x 6/28
= 5/14
Tốn công quá !
a ) 15 / 90 x 94 + 15 / 94 x 98 + 15 / 98 x102+...+ 15 / 146 x 150
= 15/4 x ( 4/90 x 94 + 4/94 x 98 + ... + 4/ 146 x 150 )
= 15/4 x ( 1/90 - 1/94 + 1/94 - 1/98 + ... + 1/146 - 1/150 )
= 15/4 x ( 1/90 - 1/150 )
= 15/4 x 2/450
= 1/60
b ) 10 / 56 + 10/ 140 + 10 / 260+...+ 10 /1400
= 5/28 + 5/70 + 5/130 + ... + 5/700
= 5/4 x 7 + 5/7 x 10 + 5/10 x 13 + ... + 5 /25 x 28
= 5/3 x ( 3/4 x 7 + 3/7 x 10 + ... + 3/25 x 28 )
= 5/3 x ( 1/4 - 1/7 + 1/7 - 1/10 + ... + 1/25 - 1/28 )
= 5/3 x ( 1/4 - 1/28 )
= 5/3 x 6/28
= 5/14
\(F=\frac{15}{90.94}+\frac{15}{94.98}+\frac{15}{98.102}+....+\frac{15}{146.150}\)
\(\Rightarrow F=\frac{15}{4}\left(\frac{15}{90}-\frac{15}{94}+\frac{15}{94}-\frac{15}{98}+....+\frac{15}{146}-\frac{15}{150}\right)\)
\(\Rightarrow F=\frac{15}{4}\left(\frac{1}{6}-\frac{1}{10}\right)=\frac{15}{4}\left(\frac{5}{30}-\frac{3}{30}\right)=\frac{15}{4}.\frac{1}{15}=\frac{15}{60}=\frac{1}{4}\)
a) \(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(A=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(A=2\cdot\left(\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{15\cdot16}\right)\)
\(A=2\cdot\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(A=2\cdot\left(\frac{1}{4}-\frac{1}{16}\right)=2\cdot\frac{3}{16}=\frac{3}{8}\)
b) \(B=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
\(B=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(B=\frac{5}{3}\cdot\left(\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+...+\frac{3}{25\cdot28}\right)\)
\(B=\frac{5}{3}\cdot\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(B=\frac{5}{3}\cdot\left(\frac{1}{4}-\frac{1}{28}\right)=\frac{5}{3}\cdot\frac{3}{14}=\frac{5}{14}\)
Ta có :
\(H=\frac{15}{90.94}+\frac{15}{94.98}+\frac{15}{98.102}+...+\frac{15}{146.150}\)
\(H=\frac{15}{4}\left(\frac{4}{90.94}+\frac{4}{94.98}+\frac{4}{98.102}+...+\frac{4}{146.150}\right)\)
\(H=\frac{15}{4}\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+\frac{1}{98}-\frac{1}{102}+...+\frac{1}{146}-\frac{1}{150}\right)\)
\(H=\frac{15}{4}\left(\frac{1}{90}-\frac{1}{150}\right)\)
\(H=\frac{15}{4}.\frac{1}{225}\)
\(H=\frac{1}{60}\)
Vậy \(H=\frac{1}{60}\)
Chúc bạn học tốt ~
\(H=\frac{15}{90\cdot94}+\frac{15}{94\cdot98}+\frac{15}{98\cdot102}+...+\frac{15}{146\cdot150}\)
\(H=15\left(\frac{1}{90\cdot94}+\frac{1}{94\cdot98}+\frac{1}{98\cdot102}+...+\frac{1}{146\cdot150}\right)\)
\(H=15\left[\frac{1}{4}\left(\frac{4}{90\cdot94}+\frac{4}{94\cdot98}+\frac{4}{98\cdot102}+...+\frac{4}{146\cdot150}\right)\right]\)
\(H=15\left[\frac{1}{4}\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+\frac{1}{98}-\frac{1}{102}+...+\frac{1}{146}-\frac{1}{150}\right)\right]\)
\(H=15\left[\frac{1}{4}\left(\frac{1}{90}-\frac{1}{150}\right)\right]\)
\(H=15\left[\frac{1}{4}\cdot\frac{1}{225}\right]\)
\(H=15\cdot\frac{1}{900}\)
\(H=\frac{1}{60}\)
\(A=\frac{15}{90.94}+\frac{15}{94.98}+...+\frac{15}{146.150}\)
\(A=15\left(\frac{1}{90.94}+\frac{1}{94.98}+...+\frac{1}{146.150}\right)\)
\(A=\frac{15}{4}\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+...+\frac{1}{146}-\frac{1}{150}\right)\)
\(A=\frac{15}{4}\left(\frac{1}{90}-\frac{1}{150}\right)\)
\(A=\frac{15}{4}.\frac{1}{225}\)
\(A=\frac{1}{60}\)
\(A=\frac{15}{90.94}+\frac{15}{94.98}+...+\frac{15}{146.150}\)
\(A=\frac{4}{4}\left(\frac{15}{90.94}+\frac{15}{94.98}+...+\frac{15}{146.150}\right)\)
\(A=\frac{15}{4}\left(\frac{4}{90.94}+\frac{4}{94.98}+...+\frac{4}{146.150}\right)\)
\(A=\frac{15}{4}\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+...+\frac{1}{146}-\frac{1}{150}\right)\)
\(A=\frac{15}{4}\left(\frac{1}{90}-\frac{1}{150}\right)\)
\(A=\frac{15}{4}.\frac{1}{225}=\frac{1}{60}\)
\(B=\frac{6}{15.18}+\frac{6}{18.21}+...+\frac{6}{87.90}\)
\(B=\frac{3}{3}\left(\frac{6}{15.18}+\frac{6}{18.21}+...+\frac{6}{87.90}\right)\)
\(B=2\left(\frac{3}{15.18}+\frac{3}{18.21}+...+\frac{3}{87.90}\right)\)
\(B=2\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}\right)\)
\(B=2\left(\frac{1}{15}-\frac{1}{90}\right)\)
\(B=2.\frac{1}{18}=\frac{1}{9}\)
Trả lời:
\(A=\frac{15}{90.94}+\frac{15}{94.98}+...+\frac{15}{146.150}\)
\(A=\frac{15}{4}.\left(\frac{4}{90.94}+\frac{4}{94.98}+...+\frac{4}{146.150}\right)\)
\(A=\frac{15}{4}.\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+...+\frac{1}{146}-\frac{1}{150}\right)\)
\(A=\frac{15}{4}.\left(\frac{1}{90}-\frac{1}{150}\right)\)
\(A=\frac{15}{4}.\frac{1}{225}\)
\(A=\frac{1}{60}\)
\(B=\frac{6}{15.18}+\frac{6}{18.21}+...+\frac{6}{87.90}\)
\(B=2.\left(\frac{3}{15.18}+\frac{3}{18.21}+...+\frac{3}{87.90}\right)\)
\(B=2.\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}\right)\)
\(B=2.\left(\frac{1}{15}-\frac{1}{90}\right)\)
\(B=2.\frac{1}{18}\)
\(B=\frac{1}{9}\)
bạn xem lai đề phần a đi mik giúp cho