K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

a) \(\frac{2x}{3}=\frac{3y}{4}\Leftrightarrow8x=9y\Rightarrow x=\frac{9y}{8}\left(1\right)\)

     \(\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow15y=16z\Rightarrow z=\frac{15y}{16}\left(2\right)\)

THay (1) và (2) vào biểu thức \(x+y+z=41\);ta được : \(\frac{9y}{8}+y+\frac{15y}{16}=41\)

\(\Rightarrow18y+16y+15y=656\Rightarrow y=\frac{656}{49}\)

Do đó : \(x=\frac{\frac{9.656}{49}}{8}=\frac{738}{49}\)

             \(z=\frac{\frac{15.656}{49}}{16}=\frac{615}{49}\)

KL : \(x=\frac{738}{49};y=\frac{656}{49};z=\frac{615}{49}\)

25 tháng 7 2017

b) Ta có : \(4x=3y\Rightarrow x=\frac{3y}{4}\)(1)  

                \(5y=6z\Rightarrow z=\frac{5y}{6}\)(2)

Thay (1) và (2) vào biểu thức \(x^2+y^2+z^2=500\);ta được :

\(\left(\frac{3y}{4}\right)^2+y^2+\left(\frac{5y}{6}\right)^2=500\)

\(\Rightarrow\frac{9y^2}{16}+y^2+\frac{25y^2}{36}=500\Rightarrow324y^2+576y^2+400y^2=288000\)

\(\Rightarrow1300y^2=288000\Rightarrow y^2=\frac{2880}{13}\Rightarrow\orbr{\begin{cases}y=\frac{24\sqrt{65}}{13}\\y=-\frac{24\sqrt{65}}{13}\end{cases}}\)

Với \(y=\frac{24\sqrt{65}}{13}\Rightarrow x=\frac{3\cdot\frac{24\sqrt{65}}{13}}{4}=\frac{18\sqrt{65}}{13};z=\frac{5\cdot\frac{24\sqrt{65}}{13}}{6}\)

     \(y=-\frac{24\sqrt{65}}{13}\Rightarrow x=-\frac{18\sqrt{65}}{13};z=\frac{5\cdot-\frac{24\sqrt{65}}{13}}{6}\)

7 tháng 1 2017

Đặt \(\frac{x-1}{5}=\frac{y-2}{3}=\frac{z-2}{2}=k\)=>\(\hept{\begin{cases}x=5k+1\\y=3k+2\\z=2k+2\end{cases}}\)

Có \(3x^2-5y^2-6z^2=43\)<=>\(3\left(5k+1\right)^2-5\left(3k+2\right)^2-6\left(2k+2\right)^2=43\)

\(\Leftrightarrow3\left(25k^2+10k+1\right)-5\left(9k^2+12k+4\right)-6\left(4k^2+8k+4\right)=43\)

\(\Leftrightarrow75k^2+30k+3-45k^2-60k-20-24k^2-48k-24=43\)

\(\Leftrightarrow6k^2-78k-41=43\)\(\Leftrightarrow6k^2-78-84=0\)\(\Leftrightarrow6\left(k-14\right)\left(k+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}k-14=0\\k+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}k=14\\k=-1\end{cases}}\)

+) Với k=14 thì: x=14.5+1=71;y=14.3+2=44;z=14.2+2=30

+) Với k=-1 thì: x=(-1).5+1=-4;y=(-1).3+2=-1;z=(-1).2+2=0

Vậy .....................

14 tháng 10 2018

2) :v,đề sai chứng minh hoài không ra.

Đề: Cho b2 = ac. CMR: \(\frac{a^2+b^2}{b^2+c^2}=\frac{a^2}{b^2}\)

Đặt \(b^2=ac=k\Rightarrow\frac{a}{b}=\frac{b}{c}=k\Rightarrow\hept{\begin{cases}a=kb\\b=kc\end{cases}}\) . Thay vào ta có:

\(\frac{a^2+b^2}{b^2+c^2}=\frac{\left(kb\right)^2+1b^2}{\left(kc\right)^2+c^2}=\frac{b^2\left(k^2+1\right)}{c^2\left(k^2+1\right)}=\frac{b^2}{c^2}\) (1)

\(\frac{a^2}{b^2}=\frac{\left(kb\right)^2}{\left(kc\right)^2}=\frac{b^2}{c^2}\) (2)

Từ (1) và (2) ta có: \(\frac{a^2+b^2}{b^2+c^2}=\frac{a^2}{b^2}^{\left(đpcm\right)}\)

14 tháng 10 2018

1,Ta có \(4x=3y\Rightarrow20x=15y\)

\(5y=7z\Rightarrow15y=21z\)

Do đó \(20x=15y=21z\Rightarrow\frac{x}{21}=\frac{y}{28}=\frac{z}{20}\)

Đặt \(\frac{x}{21}=\frac{y}{28}=\frac{z}{20}=k\Rightarrow x=21k;y=28k;z=20k\)

Ta có \(3x+5y-4z=246\Rightarrow63k+140k-80k=246\)

\(\Rightarrow123k=246\Rightarrow k=2\)

Do đó x = 42 ; y = 56 ; z = 40

Vậy....

b, Đề không hề sai nhé bạn CTV tth , đừng tưởng ko làm được là bảo sai

Ta có \(\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}=\frac{a.\left(a+c\right)}{c.\left(a+c\right)}=\frac{a}{c}\)

12 tháng 6 2018

Đặt  \(\frac{x}{4}=\frac{y}{3}=\frac{z}{5}=kak\left(kak\ne0\right)\)

\(\Rightarrow\hept{\begin{cases}x=4kak\\y=3kak\\z=5kak\end{cases}}\)

Mà  \(x^2+y^2+z^2=200\)

\(\Leftrightarrow\left(4kak\right)^2+\left(3kak\right)^2+\left(5kak\right)^2=200\)

\(\Leftrightarrow16.kak^2+9.kak^2+25.kak^2=200\)

\(\Leftrightarrow kak^2.\left(16+9+25\right)=200\)

\(\Leftrightarrow kak^2.50=200\)

\(\Leftrightarrow kak^2=4\)

\(\Leftrightarrow\orbr{\begin{cases}kak=2\\kak=-2\end{cases}}\)

+) Với  \(kak=2\)thì  \(\hept{\begin{cases}x=4kak=8\\y=3kak=6\\z=5kak=10\end{cases}}\)

+) Với  \(kak=-2\)thì  \(\hept{\begin{cases}x=4kak=-8\\y=3kak=-6\\z=5kak=-10\end{cases}}\)

Vậy ...

12 tháng 6 2018

Đặt  \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\left(k\ne0\right)\)

\(\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)

Ta có :  \(xyz=-30\)

\(\Leftrightarrow2k\times3k\times5k=-30\)

\(\Leftrightarrow30k^3=-30\)

\(\Leftrightarrow k^3=-1\)

\(\Leftrightarrow k=-1\)

Thay vào ta được :

\(\hept{\begin{cases}x=2k=-2\\y=3k=-3\\z=5k=-5\end{cases}}\)

Vậy ...

15 tháng 8 2016

a) theo t/c dãy tỉ số = nhau ta có:

\(\frac{x}{3}=\frac{y}{-4}=\frac{z}{7}=\frac{2x+3y-5z}{6-12-35}\)=\(\frac{82}{-41}=-2\)

 => x = -6; y= 8; z= -14

b) từ 5x=6y  và 3y=4z => \(\frac{x}{6}=\frac{y}{5};\frac{y}{4}=\frac{z}{3}\)  => \(\frac{x}{24}=\frac{y}{20}=\frac{z}{15}\)

ta có \(\frac{x}{24}=\frac{y}{20}=\frac{z}{15}=\frac{x^2-y^2+z^2}{24^2-20^2+15^2}\)=\(\frac{401}{401}=1\)

 =>  \(x=24;y=20;z=15\)

15 tháng 8 2016

a/ \(\frac{x}{3}=\frac{y}{-4}=\frac{z}{7}\Rightarrow\frac{2x}{6}=\frac{3y}{-12}=\frac{5z}{35}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:\(\frac{2x}{6}=\frac{3y}{-12}=\frac{5z}{35}=\frac{2x+3y-5z}{6+\left(-12\right)-35}=\frac{82}{-41}=-2\)

Khi đó:\(\frac{2x}{6}=-2\Rightarrow x=-6;\frac{3y}{-12}=-2\Rightarrow y=8;\frac{5z}{35}=-2\Rightarrow z=-12\)

b/\(5x=6y\Rightarrow\frac{x}{6}=\frac{y}{5}\Rightarrow\frac{x}{24}=\frac{y}{20};3y=4z\Rightarrow\frac{y}{4}=\frac{z}{3}\Rightarrow\frac{y}{20}=\frac{z}{15}\Rightarrow\frac{x}{24}=\frac{y}{20}=\frac{z}{15}\)

Đặt\(\frac{x}{24}=\frac{y}{20}=\frac{z}{15}=k\Rightarrow\frac{x^2}{576}=\frac{y^2}{400}=\frac{z^2}{225}=k^2\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{576}=\frac{y^2}{400}=\frac{z^2}{225}=\frac{x^2-y^2+z^2}{576-400+225}=\frac{401}{401}=1=k^2\Rightarrow k\in\left\{1;-1\right\}\)

Khi \(k=-1\)thì: \(\frac{x}{24}=-1\Rightarrow x=-24;\frac{y}{20}=-1\Rightarrow y=-20;\frac{z}{15}=-1\Rightarrow z=-15\)

Khi \(k=1\)thì: \(\frac{x}{24}=1\Rightarrow x=24;\frac{y}{20}=1\Rightarrow y=20;\frac{z}{15}=1\Rightarrow z=15\)

c)\(\frac{3x}{2}=\frac{2y}{3}=\frac{4z}{5}\Rightarrow\frac{3x}{24}=\frac{2y}{36}=\frac{4z}{60}\Rightarrow\frac{x}{8}=\frac{y}{18}=\frac{z}{15}\)

Áp dụng tính chất của tỉ lệ thức ta có: \(\frac{x}{8}=\frac{y}{18}=\frac{z}{15}=\frac{x+y-z}{8+18-15}=\frac{44}{11}=4\)

khi đó:\(\frac{x}{8}=4\Rightarrow x=32;\frac{y}{18}=4\Rightarrow y=72;\frac{z}{15}=4\Rightarrow z=60\)

25 tháng 10 2017

Mình chỉ cần các bạn trả lời 4 câu nhanh nhất mình sẽ k.

30 tháng 7 2019

a)x-3/x+5=5/7 suy ra 7.(x-3) = 5(x+5)

Tương đương : 7x - 21 = 5x + 25

                          7x - 5x = 25 + 21 = 46

                          2x = 46 suy ra : x = 46/2 = 23

 Vậy x = 23

21 tháng 7 2017

B)ĐỀ BÀI \(\Leftrightarrow\left(\frac{X}{2}\right)^3=\frac{X}{2}.\frac{Y}{3}.\frac{Z}{5}=\frac{810}{30}=27\\ \)

             \(\Leftrightarrow\frac{X}{2}=3\Rightarrow X=6\)

 TỪ ĐÓ SUY RA Y=9;Z=15

11 tháng 12 2018

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}=\frac{x^2+y^2}{208}=1\)

Vậy x = 8 ; y = 12 ; z = 15