Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7x2 - 15x + 8 = 0
\(\Leftrightarrow\)7x2 - 7x - 8x +8 = 0
\(\Leftrightarrow\)7x.(x - 1) - 8.(x - 1) = 0
\(\Leftrightarrow\)(7x - 8)(x - 1) = 0
\(\Leftrightarrow\)7x - 8 = 0 và x - 1 = 0
\(\Leftrightarrow\) x = 8/7 và x= 1
x2 - 5x - 6 = 0
<=>x2 - x + 6x - 6 = 0
<=>x(x-1) + 6(x-1) = 0
<=> (x+6)(x-1) = 0
<=> x+6 = 0 và x-1 = 0
<=> x = -6, x= 1
cách giải như sau
x.(1/3-0,5)=0,75
x.(-1/6)=0,75
x=0,75:(-1,6)
x=-9/2
f(2015)=a(2015)^5+b(2015)^3+2014.2015 +1 mà f(2015)=2 => a(2015)^5+b(2015)^3+2014.2015+1=2 =>a(2015)^5+b(2015)^3+2014.2015 =1
Xét f(-2015)=a(-2015)^5+b(-2015)^3+2014.(-2015) +1=-a(2015)^5-b(2015)^3-2014.2015 +1 = -(a(2015)^5+b(2015)^3+2014.2015)+1 =-1+1=0
bài dễ
ta có f(2015)=a.2015^5+b.2015^3+2014.2015+1
f(-2015)=a.(-2015)^5+b.(-2015)^3+2014.(-2015)+1
=>f(2015)+f(-2015)=2
(=)2+f(-2015)+2
(=) f(-2015)=0
a) ta có để h(x)=3.|x-2|+5 đạt GTNN
=>3.|x-2| nhỏ nhất
mà 3.|x-2| không âm
=>3.|x-2|>hoặc = 0 mà để 3.|x-2|nhỏ nhất
=>3.|x-2|=0
=>x=2
thay h(2)=3.|2-2|+5=5
vậy GTNN của h(x)=1/2
b) để 1/(x^2-2x+2) đạt GTLN
=> x^2-2x+2 nhỏ nhất
=> x^2-2x nhỏ nhất mà x^2-2x ko âm
=> x^2-2x>hoặc =0
=> x^2-2x=0
=>x=0
thay 1/(1^2-2.1+2)=1/2
Ta có: |x+1| ;|x+3| ;|x+5|>=0
=> |x+1|+|x+3|+|x+5|>=0
=> 7x>=0
=> x+1+x+3+x+5=7x
3x+8=7x
4x=8
x=2
|x + 1| + |x + 3| + |x + 5| = 7x
có |x + 1| > 0; |x + 3| > 0; |x + 5| > 0
=> 7x > 0
=> x > 0
=> x + 1 + x + 3 + x + 5 = 7x
=> 3x + 9 = 7x
=> 3x - 7x = - 9
=> -4x = -9
=> x = 9/4