\(\dfrac{x-1}{5}=\dfrac{y-2}{3}=\dfrac{z-2}{2}\) và x + 2y - z...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2018

Bài 1:

a) ta có: \(\frac{x-1}{5}=\frac{y-2}{3}=\frac{z-2}{2}=\frac{2y-4}{6}\)

ADTCDTSBN

có: \(\frac{x-1}{5}=\frac{2y-4}{6}=\frac{z-2}{2}=\frac{x-1+2y-4-z+2}{5+6-2}\)\(=\frac{\left(x+2y-z\right)-\left(1+4-2\right)}{9}=\frac{6-3}{9}=\frac{3}{9}=\frac{1}{3}\)

=>...

bn tự tính típ nhé!

b) ta có: \(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}\)

ADTCDTSBN

có: \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{x^2+y^2}{4+9}=\frac{52}{13}=4\)

=>...

31 tháng 7 2018

Bài 2:

a) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

\(\Rightarrow\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{b}\left(đpcm\right)\)

b) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\) (*)

mà \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

Từ (*) \(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)

31 tháng 7 2018

Bài 1.

a) Nhân 2 vào tỉ số thứ 2 rồi áp dụng tính chất của dãy tỉ số bằng nhau.

Kết quả:

\(\left\{{}\begin{matrix}x=\dfrac{8}{3}\\y=3\\z=\dfrac{8}{3}\end{matrix}\right.\)

b) \(\dfrac{x}{y}=\dfrac{2}{3}\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}\)

Theo tính chất dãy tỉ số bằng nhau:

\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{x^2+y^2}{4+9}=\dfrac{52}{13}=4\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=16\\y^2=36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm4\\y=\pm6\end{matrix}\right.\)

Vậy ...

Bài 2.

a) \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{b}+1=\dfrac{c}{d}+1\Leftrightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

b) \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{ac}{bd}=\dfrac{c^2}{d^2}\)

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{ac}{bd}=\dfrac{a^2}{b^2}\)

\(\Leftrightarrow\dfrac{ac}{bd}=\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{a^2+c^2}{b^2+d^2}\)

Vậy ...

31 tháng 7 2018

2:

b) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=i\Rightarrow\left\{{}\begin{matrix}a=bi\\c=di\end{matrix}\right.\)

Ta có:

\(\dfrac{ac}{bd}=\dfrac{c^2i}{d^2i}=\dfrac{c^2}{d^2}=\left(\dfrac{c}{d}\right)^2=i^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2i^2+d^2i^2}{b^2+d^2}=\dfrac{i^2\left(b^2+d^2\right)}{b^2+d^2}=i^2\)

Từ đó suy ra \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\) (đpcm)

20 tháng 2 2019

\(A=2x+2y+3xy\left(x+y\right)+5\left(x^3y^2+x^2y^3\right)\)

\(\Rightarrow A=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)\)

\(\Rightarrow A=0\) ( do x+y = 0 )

15 tháng 10 2017

Ta có:

\(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\left(1\right)\)

\(c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\left(2\right)\)

Từ (1) và (2), suy ra: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)

\(\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\)

Vậy \(\dfrac{a}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)(đpcm)

~ Học tốt!~

22 tháng 12 2017

5a.

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{19.21}\\ =\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}.\dfrac{20}{21}=\dfrac{10}{21}\)

b.

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\\ =\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}.1=\dfrac{1}{2}\)

10 tháng 8 2018

\(xy-3x-y=6\)

\(=>xy+3x-y-3=6-3\)

\(=>x\left(y+3\right)-\left(y+3\right)=3\)

\(=>\left(y+3\right)\left(x-1\right)=3\)

y+3 -1 3 1 -3
x-1 -3 1 3 -1

y+3 -1 3 -3 1
y -4 -1 -7 -3

x-1 -3 1 3 -1
x -2 2 4 0

30 tháng 12 2017

a)

Ta có: \(9x=5y=15z\Rightarrow\dfrac{9x}{45}=\dfrac{5y}{45}=\dfrac{15z}{45}\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{z}{3}\Rightarrow\dfrac{-x}{-5}=\dfrac{y}{9}=\dfrac{z}{3}_{\left(1\right)}\)

\(-x+y-z=11_{\left(2\right)}.\)

Từ \(_{\left(1\right)}\)\(_{\left(2\right)}\), kết hợp tính chất dãy tỉ só bằng nhau có:

\(\dfrac{-x}{-5}=\dfrac{y}{9}=\dfrac{z}{3}=\dfrac{-x+y-z}{-5+9-3}=\dfrac{11}{1}=11.\)

Từ đó: \(\left\{{}\begin{matrix}\dfrac{-x}{-5}=11\Rightarrow-x=-55\Rightarrow x=55.\\\dfrac{y}{9}=11\Rightarrow y=99.\\\dfrac{z}{3}=11\Rightarrow z=33.\end{matrix}\right.\)

Vậy.....

b); c); d); e) làm tương tự.

21 tháng 12 2017

1. Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\) \(\left(1\right)\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{b^2.k^2+d^2.k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) \(\left(2\right)\)
Từ \(\left(1\right)\text{và (2)}\) \(\Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{ac}{bd}\)
2. \(\left|5-\dfrac{3}{4}x\right|+\left|\dfrac{2}{7}y+3\right|=0\)
\(\left\{{}\begin{matrix}\left|5-\dfrac{3}{4}x\right|\ge0\\\left|\dfrac{2}{7}y+3\right|\ge0\end{matrix}\right.\Rightarrow\left|5-\dfrac{3}{4}x\right|+\left|\dfrac{2}{7}y+3\right|\ge0\)
\(\text{Mà }\left|5-\dfrac{3}{4}x\right|+\left|\dfrac{2}{7}y+3\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|5-\dfrac{3}{4}x\right|=0\\\left|\dfrac{2}{7}y+3\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}5-\dfrac{3}{4}x=0\\\dfrac{2}{7}y+3=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{4}x=5\\\dfrac{2}{7}x=-3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{20}{3}\\y=-\dfrac{21}{2}\end{matrix}\right.\)
\(\text{Vậy }\left\{{}\begin{matrix}x=\dfrac{20}{3}\\y=-\dfrac{21}{2}\end{matrix}\right.\)

21 tháng 12 2017

3. \(\dfrac{1}{2}a=\dfrac{2}{3}b=\dfrac{3}{4}c\)

\(\Rightarrow\dfrac{a}{2}=\dfrac{b}{\dfrac{3}{2}}=\dfrac{c}{\dfrac{4}{3}}\)
\(\text{Mà }a-b=15\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{b}{\dfrac{3}{2}}=\dfrac{c}{\dfrac{4}{3}}=\dfrac{a-b}{2-\dfrac{3}{2}}=\dfrac{15}{\dfrac{1}{2}}=30\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=30\Rightarrow a=30.2=60\\\dfrac{b}{\dfrac{3}{2}}=30\Rightarrow b=30.\dfrac{3}{2}=45\\\dfrac{c}{\dfrac{4}{3}}=30\Rightarrow c=30.\dfrac{4}{3}=40\end{matrix}\right.\)
\(\text{Vậy }\left\{{}\begin{matrix}a=60\\b=45\\c=40\end{matrix}\right.\)