K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2014

 

2)     => X/3 = Y/4

(2X^2 + Y^2)/(2.3^2 + 4^2) =  136/34 = 4

2X^2 = 4.18 = 72 => x  = 6

y^2 = 4.16 = 64 => y = 8

5)  (a+2b-3c)/(2+2.3 - 3.4) =  20/4 = 5

a = 10

2b = 30 => b = 15

3c = 60 => c = 20 

7 tháng 11 2020

kho hieu qua 

18 voi 16 lay dau ra vay 

24 tháng 7 2019

a)Ta có : \(4x=5y=>\frac{x}{5}=\frac{y}{4}=\frac{2x}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{5}=\frac{y}{4}=\frac{2x}{10}=\frac{y-2x}{4-10}=\frac{-5}{-6}=\frac{5}{6}\)

Từ \(\frac{x}{5}=\frac{5}{6}=>x=\frac{25}{6}\)

Từ \(\frac{y}{4}=\frac{5}{6}=>y=\frac{10}{3}\)

17 tháng 9 2017

Ta có:

\(3x=4y\Leftrightarrow\frac{x}{4}=\frac{y}{3}\)  và \(y-x=5\)

Áp dụng tính chất của dạy tỉ số bằng nhau:

\(\frac{x}{4}=\frac{y}{5}=\frac{y-x}{5-4}=\frac{5}{1}=5\)

\(\hept{\begin{cases}\frac{x}{4}=5\Rightarrow x=5.4=20\\\frac{y}{5}=5\Rightarrow y=5.5=25\end{cases}}\)

Vậy \(x=20;y=25\)

b)

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và \(a-2b+3c=35\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a-2b+3c}{3-2.4+3.5}=\frac{35}{10}=3,5\)

\(\hept{\begin{cases}\frac{a}{3}=3,5\Rightarrow a=3,5.3=10,5\\\frac{b}{4}=3,5\Rightarrow b=3,5.4=14\\\frac{c}{5}=3,5\Rightarrow c=3,5.5=17,5\end{cases}}\)

Vậy   \(a=10,5;b=14;c=17,5\)

17 tháng 9 2017

Bài 1: \(3x=4y\Leftrightarrow y=\frac{3x}{4}\)

thay vào \(y-x=5\Leftrightarrow\frac{3x}{4}-x=5\Leftrightarrow\frac{-x}{4}=5\Leftrightarrow x=-20\Leftrightarrow y=\frac{3x}{4}=\frac{3.\left(-20\right)}{4}\)=-15

Bài 2: Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{2b}{8}=\frac{3c}{15}=\frac{a-2b+3c}{3-8+15}=\frac{35}{10}=\frac{7}{2}\)

=>\(a=\frac{7}{2}.3=\frac{21}{2};b=\frac{7}{2}.4=14;c=\frac{7}{2}.5=\frac{35}{2}\)

2 tháng 9 2015

2).  2x = 3y ; 5y = 7z
\(\Rightarrow\) \(\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14};\frac{y}{14}=\frac{z}{10}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
\(\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Áp dụng t/c của dãy t/s bằng nhau ta có :
 \(\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow\) \(\frac{3x}{63}=2\Rightarrow3x=126\Rightarrow x=126:2=42\)
\(\frac{7y}{98}=2\Rightarrow7y=196\Rightarrow y=196:7=28\)
\(\frac{5z}{50}=2\Rightarrow5z=100\Rightarrow z=100:5=20\)
 

16 tháng 10 2020

Mk cần gấp để nộp ạ