Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a/ \(a^3.a^9=a^{3+9}=a^{12}\)
b/\(\left(a^5\right)^7=a^{5.7}=a^{35}\)
c/ \(\left(a^6\right).4.a^{12}=a^{24}.a^{12}.4=a^{24+12}.4=a^{36}.4\)
d/ \(\left(2^3\right)^5.\left(2^3\right)^3=2^{15}.2^9=2^{15+9}=2^{24}\)
e/ \(5^6:5^3+3^3.3^2\)
\(=5^3+3^5=125+243=368\)
i/ \(4.5^2-2.3^2\)
\(=2^2.5^2-2.3^2\)
\(=2^2.25-2^2.14\)
\(=2^2.\left(25-14\right)\)
\(=2^2.11\)
\(=4.11=44\)
a: \(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5+3^5}\cdot\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5+2^5+2^5+2^5+2^5}=2^x\)
\(\Leftrightarrow2^x=\dfrac{4^5}{3^5}\cdot\dfrac{6^5}{2^5}=4^5=2^{10}\)
=>x=10
b: \(\left(x-1\right)^{x+4}=\left(x-1\right)^{x+2}\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\)
\(\Leftrightarrow x\left(x-1\right)^{x+2}\cdot\left(x-2\right)=0\)
hay \(x\in\left\{0;1;2\right\}\)
c: \(6\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)
\(\Leftrightarrow5\cdot\left(6-x\right)^{2003}=0\)
\(\Leftrightarrow6-x=0\)
hay x=6
Đặt \(A=5+5^3+5^5+....+5^{47}+5^{49}\)
\(\Rightarrow5^2A=5^3+5^5+5^7+.....+5^{49}+5^{51}\)
\(\Rightarrow5^2A-A=\left(5^3+5^5+5^7+....+5^{49}+5^{51}\right)-\left(3+3^3+3^5+....+5^{47}+5^{49}\right)\)
\(\Rightarrow24A=5^{51}-5\)
\(\Rightarrow A=\dfrac{5^{51}-5}{24}\)
Vậy ............................................................
1)a) \(\left(3x-7\right)^5=32\Rightarrow\left(3x-7\right)^5=2^5\)
\(\Rightarrow3x-7=2\Rightarrow3x=9\Rightarrow x=3\)
Vậy \(x=3\)
b) \(\left(4x-1\right)^3=-27.125\)
\(\Rightarrow\left(4x-1\right)^3=-3^3.5^3=-15^3\)
\(\Rightarrow4x-1=-15\Rightarrow4x=-14\Rightarrow x=-3,5\)
Vậy \(x=-3,5\)
c) \(3^{4x+4}=81^{x+3}\Rightarrow3^{4x+4}=3^{4x+12}\)
\(\Rightarrow4x+4=4x+12\)
\(\Rightarrow4x=4x+8\)
\(\Rightarrow x\in\varnothing\)
d) \(\left(x-5\right)^7=\left(x-5\right)^9\)
\(\Rightarrow\left(x-5\right)^7-\left(x-5\right)^9=0\)
\(\Rightarrow\left(x-5\right)^7.\left[1-\left(x-5\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-5\right)^7=0\\1-\left(x-5\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\\left(x-5\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x-5=-1\\x-5=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)
Bài 1:
a: =>13x+8=9x+20
=>4x=12
hay x=3
b: \(\Leftrightarrow5x-7=-8-11-3x\)
=>5x-7=-3x-19
=>8x=-12
hay x=-3/2
c: \(\Leftrightarrow\left[{}\begin{matrix}12x-7=5\\12x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{6}\end{matrix}\right.\)
e: =>3x+1=-5
=>3x=-6
hay x=-2
\(\left|2x\right|+2x=0\)
\(\Rightarrow\left|2x\right|=-2x\)
\(\Rightarrow2x\le0\)
\(\Rightarrow x\le0\)
Vậy \(x\le0\)
\(\left(x-1\right).\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
\(\left|x-3\right|+x-3=0\)
\(\left|x-3\right|=-x+3\)
\(\left|x-3\right|=-\left(x-3\right)\)
\(\Rightarrow x-3\le0\)
\(\Rightarrow x\le3\)
Vậy \(x\le3\)
\(\left(x+1\right)^3=\left(x+1\right)^5\)
\(\left(x+1\right)^5-\left(x+1\right)^3=0\)
\(\left(x+1\right)^3.\left[\left(x+1\right)^2-1\right]=0\)
\(\orbr{\begin{cases}\left(x+1\right)^3=0\\\left(x+1\right)^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}}\)hoặc \(x=-2\)
Vậy \(x\in\left\{-1;0;-2\right\}\)
\(\left(x-2\right)^3=2^9\)
\(\left(x-2\right)^3=\left(2^3\right)^3\)
\(\Rightarrow x-2=2^3\)
\(x=8+2\)
\(x=10\)
Vậy \(x=10\)
Câu 6 tương tự câu 4
Tham khảo nhé~
P/S: nên chia nhỏ đăng thành nhiều bài khác nhau
Bài 1 tự làm!
Bài 2:
a, \(\left(3x-4\right)\left(x-1\right)^3=0\Rightarrow\left[{}\begin{matrix}3x-4=0\\\left(x-1\right)^3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=1\end{matrix}\right.\)
b, \(2^{2x-1}:4=8^3\Rightarrow2^{2x-1}:2^2=2^9\)
\(\Rightarrow2x-1-2=9\Rightarrow2x-3=9\Rightarrow2x-12\Rightarrow x=6\)
c, Đề chưa rõ
d, \(\left(x+2\right)^5=2^{10}\Rightarrow\left(x+2\right)^5=4^5\Rightarrow x+2=4\Rightarrow x=2\)
e, \(\left(3x-2^4\right).7^3=2.7^4\Rightarrow3x-2^4=2.7^4:7^3\Rightarrow3x-16=2.7=14\)
\(\Rightarrow3x=14+16=30\Rightarrow x=\dfrac{30}{3}=10\)
f, \(\left(x+1\right)^2=\left(x+1\right)^0\Rightarrow\left(x+1\right)^2=1\) (vì x0 = 1)
\(\Rightarrow x+1=1\Rightarrow x=0\)
a) \(\left(x-6\right)^3=\left(x-6\right)^2\Leftrightarrow\orbr{\begin{cases}x-6=1\Leftrightarrow x=7\\x-6=0\Leftrightarrow x=6\end{cases}}\)
b) \(\left(7.x-11\right)^3=2^5.5^2+200\)
\(\Leftrightarrow\left(7.x-11\right)^3=800+200\)
\(\Leftrightarrow\left(7.x-11\right)^3=1000\)
\(\Leftrightarrow\left(7.x-11\right)^3=10^3\)
\(\Leftrightarrow7x-11=10\Leftrightarrow7x=21\Leftrightarrow x=3\)
c) \(3+2^{x-1}=24-\left[4^2-\left(2^2-1\right)\right]\)
\(\Leftrightarrow3+2^{x-1}=24-\left[4^2-3\right]\)
\(\Leftrightarrow3+2^{x-1}=24-13\)
\(\Leftrightarrow3+2^{x-1}=11\)
\(\Leftrightarrow2^{x-1}=8\Leftrightarrow2^{x-1}=2^3\Leftrightarrow x-1=3\Leftrightarrow x=4\)
a)\(3^x.3=243\Leftrightarrow3^x=81\Leftrightarrow3^x=3^4\Leftrightarrow x=4\)
b) \(2^x.16^2=1024\Leftrightarrow2^x.256=1024\Leftrightarrow2^x=4\Leftrightarrow2^x=2^2\Leftrightarrow x=2\)
c) \(64:4^x=16^8\Leftrightarrow4^x=67108864\Leftrightarrow4^x=4^{13}\Leftrightarrow x=13\)
d) \(2^x=16\Leftrightarrow2^x=2^4\Leftrightarrow x=4\)
\(3^x.3^3=81\)
<=> \(3^x=3\)
<=> \(x=1\)