K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 12 2018

1/

\(y\left(x+1\right)-x^2\left(x+1\right)=7\Leftrightarrow\left(x+1\right)\left(y-x^2\right)=7\)

TH1: \(\left\{{}\begin{matrix}x+1=1\\y-x^2=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=7\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x+1=7\\y-x^2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=6\\y=37\end{matrix}\right.\)

TH3: \(\left\{{}\begin{matrix}x+1=-1\\y-x^2=-7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)

TH4: \(\left\{{}\begin{matrix}x+1=-7\\y-x^2=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-8\\y=63\end{matrix}\right.\)

2/

\(\left(1+\dfrac{1}{\left(2-1\right)\left(2+1\right)}\right)\left(1+\dfrac{1}{\left(3-1\right)\left(3+1\right)}\right)...\left(1+\dfrac{1}{\left(x+1-1\right)\left(x+1+1\right)}\right)=\dfrac{2.2011}{2012}\)

\(\Leftrightarrow\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}...\dfrac{\left(x+1\right)^2}{x\left(x+2\right)}=\dfrac{2.2011}{2012}\)

\(\Leftrightarrow\dfrac{2.3.4...\left(x+1\right)}{1.2.3...x}.\dfrac{2.3.4...\left(x+1\right)}{3.4.5...\left(x+2\right)}=\dfrac{2.2011}{2012}\)

\(\Leftrightarrow\dfrac{2\left(x+1\right)}{\left(x+2\right)}=\dfrac{2.2011}{2012}\)

\(\Leftrightarrow2012\left(x+1\right)=2011\left(x+2\right)\)

\(\Leftrightarrow x=2010\)

22 tháng 3 2018

1)\(ĐKXĐ:x\ne0\)

Đặt \(\left(x+\dfrac{1}{x}\right)^2=a\)

\(\Rightarrow x^2+\dfrac{1}{x^2}=a-2\)

\(\Rightarrow VT=2a+\left(a-2\right)^2-\left(a-2\right)a\)

\(=2a+a^2-4a+4-a^2+2a=4\)

\(\Rightarrow\left(x+2\right)^2=4\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(loai\right)\\x=-4\end{matrix}\right.\)

9 tháng 9 2017

1)

\(A=\dfrac{1}{2}.\dfrac{4}{1.3}.\dfrac{9}{2.4}.\dfrac{16}{3.5}......\dfrac{4064256}{2015.2017}\\ =\dfrac{1.2.2.3.3.....2016.2016}{2.1.3.2.4.3.5....2015.2017}\\ =\dfrac{\left(2.3.4.....2016\right)}{\left(1.2.3.4....2015\right)}.\dfrac{\left(2.3.4....2016\right)}{\left(2.3.4.5....2017\right)}\\ =2016.\dfrac{1}{2017}=\dfrac{2016}{2017}\)

9 tháng 9 2017

2) a)

Ta có : \(\left(2x-\dfrac{1}{6}\right)^2+\left|3y+12\right|\ge0\) \(\forall x,y\)

\(\left(2x-\dfrac{1}{6}\right)^2+\left|3y+12\right|=0\) ( theo đề ra)

\(\)\(\Rightarrow\left\{{}\begin{matrix}\left(2x-\dfrac{1}{6}\right)^2=0\\\left|3y+12\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{12}\\y=-4\end{matrix}\right.\)

22 tháng 4 2017

a) 1x13x2x31=2xx2+x+11x−1−3x2x3−1=2xx2+x+1

Ta có: x31=(x1)(x2+x+1)x3−1=(x−1)(x2+x+1)

=(x1)[(x+12)2+34]=(x−1)[(x+12)2+34] cho nên x3 – 1 ≠ 0 khi x – 1 ≠ 0⇔ x ≠ 1

Vậy ĐKXĐ: x ≠ 1

Khử mẫu ta được:

x2+x+13x2=2x(x1)2x2+x+1=2x22xx2+x+1−3x2=2x(x−1)⇔−2x2+x+1=2x2−2x

4x23x1=0⇔4x2−3x−1=0

4x(x1

25 tháng 12 2017

c) \(8x^3-1=8x^2+4x+2\)

<=> \(\left(2x-3\right)\left(4x^2+2x+1\right)=0\)

<=> \(2x-3=0\) hoặc \(4x^2+2x+1=0\)

Th1: x=\(\dfrac{3}{2}\)

Th2: Vô nghiệm

Vậy x=\(\dfrac{3}{2}\)

28 tháng 12 2017

\(\text{a) }\dfrac{2x^2-x-1}{2}-3x^2+x+4=\left(5-x\right)\left(2x+4\right)\\ \Leftrightarrow\left(\dfrac{2x^2-x-1}{2}-3x^2+x+4\right)2=\left(5-x\right)\left(2x+4\right)2\\ \Leftrightarrow2x^2-x-1-6x^2+2x+8=\left(5-x\right)\left(4x+8\right)\\ \Leftrightarrow-4x^2+x+7=20x+40-4x^2-8x\\ \Leftrightarrow-4x^2+x+4x^2-12x=40-7\\ \Leftrightarrow-11x=33\\ \Leftrightarrow x=-3\\ \text{Vậy }S=\left\{-3\right\}\)

\(\text{b) }\dfrac{\left(2x-5\right)\left(3x+7\right)}{4}+2x-1=\dfrac{\left(x-1\right)\left(2x+4\right)}{2}+1\\ \Leftrightarrow\dfrac{\left(2x-5\right)\left(3x+7\right)}{4}+2x-1=\left(x-1\right)\left(x+2\right)+1\\ \Leftrightarrow\left(\dfrac{\left(2x-5\right)\left(3x+7\right)}{4}+2x-1\right)4=\left(x^2-x+2x-2+1\right)4\\ \Leftrightarrow\left(2x-5\right)\left(3x+7\right)+8x-4=\left(x^2+x-1\right)4\\ \Leftrightarrow6x^2-15x+14x-35+8x-4=4x^2+4x-4\\ \Leftrightarrow6x^2+7x-39=4x^2+4x-4\\ \Leftrightarrow6x^2+7x-4x^2-4x-39+4=0\\ \Leftrightarrow2x^2+3x-35=0\\ \Leftrightarrow2x^2+10x-7x-35=0\\ \Leftrightarrow\left(2x^2+10x\right)-\left(7x+35\right)=0\\ \Leftrightarrow2x\left(x+5\right)-7\left(x+5\right)=0\\ \Leftrightarrow\left(2x-7\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-7=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-5\end{matrix}\right.\\ \\ \text{Vậy }S=\left\{\dfrac{7}{2};-5\right\}\)

\(\text{c) }8x^3-1=8x^2+4x+2\\ \Leftrightarrow\left(2x-1\right)\left(4x^2+2x+1\right)=2\left(4x^2+2x+1\right)\\ \Leftrightarrow2x-1=2\\ \Leftrightarrow2x=3\\ \Leftrightarrow x=\dfrac{3}{2}\\ \text{Vậy }S=\left\{\dfrac{3}{2}\right\}\)

\(\text{d) }\left(x^2+x+1\right)\left(x^2-x+1\right)=x^6-1\\ \Leftrightarrow\left(x^3+1\right)\left(x^3-1\right)=\left(x^2+x+1\right)\left(x^2-x+1\right)\\ \Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x-1\right)\left(x^2-x+1\right)=\left(x^2+x+1\right)\left(x^2-x+1\right)\\ \Leftrightarrow\left(x+1\right)\left(x-1\right)=1\\ \Leftrightarrow x^2-1=1\\ \Leftrightarrow x^2=2\\ \Leftrightarrow x=\sqrt{2}\\ \text{Vậy }S=\left\{\sqrt{2}\right\}\)

\(\text{e) }\left(x^3+2x\right)\left(x^2+4\right)=\left(x^2+6x^2+8\right)\left(3-2x\right)\\ \Leftrightarrow x\left(x^2+2\right)\left(x^2+4\right)=\left(x^2+2x^2+4x^2+8\right)\left(3-2x\right)\\ \Leftrightarrow x\left(x^2+2\right)\left(x^2+4\right)=\left[\left(x^2+2x^2\right)+\left(4x^2+8\right)\right]\left(3-2x\right)\\ \Leftrightarrow x\left(x^2+2\right)\left(x^2+4\right)=\left[x^2\left(x^2+2\right)+4\left(x^2+2\right)\right]\left(3-2x\right)\\ \Leftrightarrow x\left(x^2+2\right)\left(x^2+4\right)=\left(x^2+4\right)\left(x^2+2\right)\left(3-2x\right)\\ \Leftrightarrow x=3-2x\\ \Leftrightarrow3x=3\\ \Leftrightarrow x=1\\ \text{Vậy }S=\left\{1\right\}\)

f) Kiểm tra lại hạng tử thứ 2 ở vế phải.

3 tháng 11 2018

c/m biểu thức không phụ thuộc vào biến

16 tháng 11 2022

a: \(=\dfrac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{2\left(x-1\right)\left(x+1\right)}{5}\cdot2\)

\(=\dfrac{10}{5}\cdot2=4\)

b: \(=\dfrac{x}{x-3}-\dfrac{x\left(x+3\right)}{2x+3}\cdot\dfrac{x^2+6x+9-x^2}{x\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{x}{x-3}-\dfrac{3}{x-3}=1\)

1 tháng 3 2017

\(\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}=\frac{3}{4}\)

\(\frac{1}{x-1}-\frac{1}{x+2}=\frac{3}{4}\)

tự tính nhé bạn

21 tháng 12 2018

GIÚP MÌNH VỚI MAI LÀ NỘP BÀI RỒI

23 tháng 12 2018

câu a) và b) thì sử dụng tính chất nếu tích =0 thì có ít nhất 1 thừa số =0

c)4x^2+4x+1=0

(2x+1)^2=0

2x+1=0

x=-1/2