Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = x2 + y2 + 2x + 6y + 12
A= ( x2 + 2x + 1) + ( y2 + 2.3y + 32) + 2
A = ( x + 1)2 + ( y + 3)2 + 2
Do : ( x + 1)2 lớn hơn hoặc bằng 0 với mọi x
( y + 3)2 lớn hơn hoặc bằng 0 với mọi x
--> ( x + 1)2 + 2 lớn hơn hoặc bằng 2 với mọi x
( y + 3)2 + 2 lớn hơn hoặc bằng 2 với mọi x
Vậy Amin = 2 khi và chỉ khi x = -1 ; y =-3
\(A=x^2-6x+10=x^2-2\cdot x\cdot3+3^2+1=\left(x-3\right)^2+1\ge1\)
Vậy GTNN của A bằng 1. Dấu "=" xảy ra \(\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
\(B=4x-x^2-5=-\left(x^2-2\cdot x\cdot2+2^2+1\right)=-\left(x-2\right)^2+1\le1\)
Vây GTLN của B bằng 1. Dấu "=" xảy ra \(\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
\(C=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\)
Vậy GTNN của C bằng 4. Dấu '=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(D=x^2+x+1=x^2+2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy GTNN của D bằng 3/4. Dấu '=" xảy ra \(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
Mk chỉ làm hai bài đầu gợi ý thôi chứ mk cũng ko đủ TG
a)\(A=x^2-6x+15\)
\(\Leftrightarrow A=x^2-6x+9+6\)
\(\Leftrightarrow A=\left(x-3\right)^2+6\)
Vì \(\left(x-3\right)^2\ge0\)\(\Rightarrow\)\(\left(x-3\right)^2+6\ge6\)
Dấu = xảy ra khi x - 3 = 0 ; x = 3
Vậy Min A = 6 khi x=3
b)\(B=x^2+4x\)
\(\Leftrightarrow B=x^2+4x+4-4\)
\(\Leftrightarrow B=\left(x+2\right)^2-4\)
Vì \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2-4\ge-4\)\
Dấu = xảy ra khi x + 2 = 0 ; x = -2
Vậy Min B = -4 khi x =-2
đề câu a, b có sai ko vậy pn,mk thấy sai