Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(2bd=c\left(b+d\right)\) Mà \(a+c=2b\)
\(\Rightarrow d\left(a+c\right)=c\left(b+d\right)\) \(\Rightarrow\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{a+c-c}{b+d-d}=\dfrac{a}{b}\)
Vậy \(\dfrac{a}{b}=\dfrac{c}{d}\) (Đpcm)
b) Giải:
Giả sử số có 3 chữ số đó là \(\overline{aaa}=111a\left(a\ne0\right)\)
Gọi số số hạng của tổng là \(n\) ta có:
\(\dfrac{n\left(n+1\right)}{2}=111a=3.37.a\) Hay \(n\left(n+1\right)=2.3.37.a\)
\(\Rightarrow n\left(n+1\right)⋮37\)
Mà \(37\) là số nguyên tố và \(n+1< 74\) (Nếu \(n=74\) thì không thỏa mãn)
Do đó: \(\left[{}\begin{matrix}n=37\\n+1=37\end{matrix}\right.\)
Nếu \(n=37\Rightarrow n+1=38\Rightarrow\dfrac{n\left(n+1\right)}{2}=703\) (không thỏa mãn)
Nếu \(n+1=37\Rightarrow n=36\Rightarrow\dfrac{n\left(n+1\right)}{2}=666\) (thỏa mãn)
Vậy số số hạng của tổng là \(36\)
hỏi mỗi từng câu 1 thôi nhé ! Vậy mình giải cho . Mình k có ý kiếm GP + SP đâu . Nhưng nhìn 8 câu này hoa hết cả mắt :v
Đúng thật. Tớ nhìn cũng thấy ngán mà. Nhiều quá nên hơi nản
\(xy-3x-y=6\)
\(=>xy+3x-y-3=6-3\)
\(=>x\left(y+3\right)-\left(y+3\right)=3\)
\(=>\left(y+3\right)\left(x-1\right)=3\)
y+3 | -1 | 3 | 1 | -3 | |
x-1 | -3 | 1 | 3 | -1 |
y+3 | -1 | 3 | -3 | 1 |
y | -4 | -1 | -7 | -3 |
x-1 | -3 | 1 | 3 | -1 |
x | -2 | 2 | 4 | 0 |
a, 1+2y / 18 = 1+4y / 24 = 1+6y / 6x
Ta có : 1+2y / 18 = 1+6y / 6x = 1+2y + 1+6y / 18 + 6y
= 2+ 8y / 18+6y = 2 (1+4y) / 2( 9 +3y) = 1+4y/9+3y
Ta lại có : 1 + 4y/24 = 1+4y / 9+3y
=> 24=9+3y => 15=3y => y=5
Vậy y=5
Nhớ like
b, 1+3y/12 = 1+5y/5x = 1+7y/4x
Ta có : 1+3y/12 = 1+7y/4x = 1+3y+1+7y / 12 +4x
= 2 + 10y / 12 +4x = 2 (1+5y) / 2 (6+2x) = 1+5y / 6+2x
Ta lại có: 1+5y / 5x = 1+5y / 6+2x
=> 5x = 6+2x => 3x = 6 => x=2
Vậy x =2
Bài 1:
\(3^{-1}.3^n+4.3^n=13.3^5\)
\(\Rightarrow3^{n-1}+4.3.3^{n-1}=13.3^5\)
\(\Rightarrow3^{n-1}\left(1+4.3\right)=13.3^5\)
\(\Rightarrow3^{n-1}.13=13.3^5\)
\(\Rightarrow3^{n-1}=3^5\)
\(\Rightarrow n-1=5\)
\(\Rightarrow n=6\)
Vậy n = 6
Bài 2a: Câu hỏi của Nguyễn Trọng Phúc - Toán lớp 7 | Học trực tuyến
Bài 1:
a) Ta có:
\(\frac{x}{3}=\frac{y}{7}\) và \(x.y=84.\)
Đặt \(\frac{x}{3}=\frac{y}{7}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=7k\end{matrix}\right.\)
Lại có: \(x.y=84\)
\(\Rightarrow3k.7k=84\)
\(\Rightarrow21.k^2=84\)
\(\Rightarrow k^2=84:21\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=\pm2.\)
+ TH1: \(k=2.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=7.2=14\end{matrix}\right.\)
+ TH2: \(k=-2.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-2\right)=-6\\y=7.\left(-2\right)=-14\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(6;14\right),\left(-6;-14\right).\)
Bài 2:
a) Ta có:
Tham khảo nha:
Biến đổi biểu thức tương đương : (x^2 - 1) /2 =y^2
Ta có: vì x,y là số nguyên dương nên
+) x>y và x phải là số lẽ.
Từ đó đặt x=2k+1 (k nguyên dương);
Biểu thức tương đương 2*k*(k+1)=y^2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : {1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; =>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
Chúc bạn học có hiệu quả!