\(\frac{1}{2}+\frac{2}{2^2} +\frac{3}{^{2^3}}+...+\frac{n}{2n}+...+\frac{2007}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2017

s<2

bài này hình như mk lm ròi nhg ko nhớ là phải đáp án này ko

nếu sai cho mình xl

25 tháng 3 2017

S<2 bạn nha

CHÚC BẠN HỌC GIỎI

8 tháng 3 2019

Gợi ý:nhân cái biểu thức bên trái vs 2,xong từ đấy là ra lun nha bn!

8 tháng 3 2019

Bạn phải giải ra chứ nói thế ai hiểu gì. Bạn giải ra giùm mình đi

17 tháng 9 2024

có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 +  2^10]

Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]

Q = 2 . 3+2^3 .3 +... + 2^9 .3

Q = 3. [ 2 + 2^3 +... + 2^9]

Vậy Q chia hết cho 3

29 tháng 4 2018

ta có: \(S=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{2007}{2^{2007}}\)

\(\Rightarrow\frac{1}{2}S=\frac{1}{2^2}+\frac{2}{2^3}+\frac{3}{2^4}+...+\frac{2007}{2^{2008}}\)

\(\Rightarrow S-\frac{1}{2}S=\frac{1}{2}+\left(\frac{2}{2^2}-\frac{1}{2^2}\right)+\left(\frac{3}{2^3}-\frac{2}{2^3}\right)+\left(\frac{4}{2^4}-\frac{3}{2^4}\right)+...+\left(\frac{2007}{2^{2007}}-\frac{2006}{2^{2007}}\right)-\frac{2007}{2^{2008}}\)

\(\frac{1}{2}S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2007}}-\frac{2007}{2^{2008}}\)

Gọi \(Q=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2007}}\)

\(\Rightarrow\frac{1}{2}Q=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2008}}\)

\(\Rightarrow Q-\frac{1}{2}Q=\frac{1}{2}-\frac{1}{2^{2008}}\)

\(\Rightarrow\frac{1}{2}Q=\frac{1}{2}-\frac{1}{2^{2008}}\)

\(Q=\left(\frac{1}{2}-\frac{1}{2^{2008}}\right):\frac{1}{2}=1-\frac{1}{2^{2007}}\)

Thay Q vào S, ta có:

\(\frac{1}{2}S=1-\frac{1}{2^{2007}}-\frac{2007}{2^{2008}}\)

\(\Rightarrow S=\left(1-\frac{1}{2^{2007}}-\frac{2007}{2^{2008}}\right):\frac{1}{2}\)

\(S=2-\frac{1}{2^{2006}}-\frac{2007}{2^{2007}}< 2\)

\(\Rightarrow S=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{2007}{2^{2007}}< 2\)

26 tháng 7 2016

Bạn sai đè thì phải,đúng phải là 1/99

Ta thấy:Từ 1->1/100 có 100 số.

Ta có:100=1.100

Vì 1=1 ;1/2<1 ;1/3<1 ;1/4<1 ;... ;1/90<1 ;1/100<1.

\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}< 1.100=100\)

\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}< 100\)