Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=y^2-9\)
b: \(=m^3+n^3\)
c: \(=8-a^3\)
d: \(=\left(a-b-c-a+b-c\right)\left(a-b-c+a-b+c\right)\)
\(=-2c\cdot\left(2a-2b\right)\)
\(=-4ac+4bc\)
f: \(=\left(1-x^3\right)\left(1+x^3\right)=1-x^6\)
b: \(\left(m+n\right)\times\left(m^2-mn+n^2\right)=m^3+n^3\)
\(a,\left(2a+3\right)x-\left(2a+3\right)y+\left(2a+3\right)\)
\(=\left(2a+3\right)\left(x-y+1\right)\)
\(b,\left(4x-y\right)\left(a-1\right)-\left(y-4x\right)\left(b-1\right)+\left(4x-y\right)\left(1-c\right)\)
\(=\left(4x-y\right)\left(a-1\right)+\left(4x-y\right)\left(b-1\right)+\left(4x-y\right)\left(1-c\right)\)
\(=\left(4x-y\right)\left(a-1+b-1+1-c\right)\)
\(=\left(4x-y\right)\left(a+b-c-1\right)\)
\(c,x^k+1-x^k-1\)
\(=0?!?!\)
\(d,x^m+3-x^m+1\)
\(=4\)
\(e,3\left(x-y\right)^3-2\left(x-y\right)^2\)
\(=\left(x-y\right)^2\left(3\left(x-y\right)-2\right)\)
\(=\left(x-y\right)^2\left(3x-3y-2\right)\)
\(f,81a^2+18a+1\)
\(=\left(9a\right)^2+2.9a+1\)
\(=\left(9a+1\right)^2\)
\(g,25a^2.b^2-16c^2\)
\(=\left(5ab\right)^2-\left(4c\right)^2\)
\(=\left(5ab+4c\right)\left(5ab-4c\right)\)
\(h,\left(a-b\right)^2-2\left(a-b\right)c+c^2\)
\(=\left(a-b-c\right)^2\)
\(i,\left(ax+by\right)^2-\left(ax-by\right)^2\)
\(=\left(ax+by-ax+by\right)\left(ax+by+ax-by\right)\)
\(=2by.2ax\)
\(=4axby\)
Bài 1:
a) Ta có: \(a^2-b^2-2a+2b\)
\(=\left(a-b\right)\left(a+b\right)-2\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b-2\right)\)
b) Ta có: \(3x-3y-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(3+5x\right)\)
c) Ta có: \(\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)
\(=\left(x-y+4-2x-3y+1\right)\left(x-y+4+2x+3y-1\right)\)
\(=\left(-x-2y+5\right)\left(3x+2y+3\right)\)
d) Ta có: \(16-x^2+4xy-4y^2\)
\(=16-\left(x^2-4xy+4y^2\right)\)
\(=16-\left(x-2y\right)^2\)
\(=\left(4-x+2y\right)\left(4+x-2y\right)\)
e) Ta có: \(\left(x+3\right)^3+\left(x-3\right)^3\)
\(=\left(x+3+x-3\right)\left[\left(x+3\right)^2-\left(x+3\right)\left(x-3\right)+\left(x-3\right)^2\right]\)
\(=2x\cdot\left(x^2+6x+9-x^2+9+x^2-6x+9\right)\)
\(=2x\cdot\left(x^2+27\right)\)
f) Ta có: \(x^4+x^3+2x^2+x+1\)
\(=\left(x^4+2x^2+1\right)+\left(x^3+x\right)\)
\(=\left(x^2+1\right)^2+x\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^2+1+x\right)\)
g) Ta có: \(9x^2-3xy+y-6x+1\)
\(=\left(9x^2-6x+1\right)-\left(3xy-y\right)\)
\(=\left(3x-1\right)^2-y\left(3x-1\right)\)
\(=\left(3x-1\right)\left(3x-1-y\right)\)
h) Ta có: \(x^3-4x^2+12x-27\)
\(=\left(x^3-27\right)-4x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+3x+9-4x\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
Bài 2:
Ta có: \(x^3+x^2z+y^2z-xyz+y^3\)
\(=\left(x^3+y^3\right)+z\left(x^2-xy+y^2\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)\)
\(=\left(x^2-xy+y^2\right)\left(x+y+z\right)\)
\(=0\cdot\left(x^2-xy+y^2\right)=0\)(đpcm)
a, <=>y2-32 <=> y2 -9 (hằng đẳng thức số 3)
b, <=> m3+n3 ( hằng đẳng thức số 6)
c, <=> 23-a3 (__________________số 7)
d, <=> (a-b-c-a+b-c )( a-b-c+a-b+c)
<=> -2c*2a= -4ac
e, <=> (a-x-y-a-x+y) [(a-x-y) 2+(a-x-y)(a+x-y)+(a+x-y)2]
(Nhân phá ngoặc) -)
d <=> (1-x2)[(1+x2)2-x2)
<=> (1-x2)(1+2x2)
<=> 1+2x2-x2-2x4
<=> 1+x2-2x4