K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(E=2\sqrt{40\sqrt{12}}+3\sqrt{5\sqrt{48}}-2\sqrt{\sqrt{75}}-4\sqrt{15\sqrt{27}}.\)

  \(=8\sqrt{5\sqrt{3}}+6\sqrt{5\sqrt{3}}-2\sqrt{5\sqrt{3}-12\sqrt{5\sqrt{3}}}\)

  \(=0\)

b) \(F=\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}.\)

Vì \(=\frac{5}{12}-\frac{1}{\sqrt{6}}=\frac{5-2\sqrt{6}}{12}=\frac{\left(\sqrt{3}-\sqrt{2}\right)^2}{12}\)

\(\frac{1}{\sqrt{3}}+\frac{1}{2\sqrt{3}}=\frac{\sqrt{3}}{3}+\frac{\sqrt{2}}{6}=\frac{2\sqrt{3}+\sqrt{2}}{6}\)

Nên \(F=\frac{2\sqrt{3}+\sqrt{2}}{6}+\frac{1}{\sqrt{3}}\sqrt{\frac{\left(\sqrt{3}-\sqrt{2}\right)^2}{12}}=\frac{2\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}}{6}=\frac{3\sqrt{3}}{6}=\frac{\sqrt{3}}{2}\)

11 tháng 10 2023

1) \(A=3\sqrt{\dfrac{1}{3}}-\dfrac{5}{2}\sqrt{12}-\sqrt{48}\)

\(=3\cdot\dfrac{\sqrt{1}}{\sqrt{3}}-\dfrac{5\sqrt{12}}{2}-\sqrt{4^2\cdot3}\)

\(=\dfrac{3\cdot1}{\sqrt{3}}-\dfrac{5\cdot2\sqrt{3}}{2}-4\sqrt{3}\)

\(=\sqrt{3}-5\sqrt{3}-4\sqrt{3}\)

\(=-8\sqrt{3}\)

2) \(A=\sqrt{12-4x}\) có nghĩa khi:

\(12-4x\ge0\)

\(\Leftrightarrow4x\le12\)

\(\Leftrightarrow x\le\dfrac{12}{4}\)

\(\Leftrightarrow x\le3\)

3) \(\dfrac{2x-2\sqrt{x}}{x-1}\)

\(=\dfrac{2\sqrt{x}\cdot\sqrt{x}-2\sqrt{x}}{\left(\sqrt{x}\right)^2-1^2}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{2\sqrt{\text{x}}}{\sqrt{x}+1}\)

17 tháng 12 2020

a, \(\dfrac{2}{5}\sqrt{75}-0,5\sqrt{48}+\sqrt{300}-\dfrac{2}{3}\sqrt{12}=2\sqrt{3}-2\sqrt{3}+10\sqrt{3}-\dfrac{4}{3}\sqrt{3}=\dfrac{26}{3}\sqrt{3}\)

b, \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}=\dfrac{\sqrt{3}\left(3\sqrt{3}-2\right)}{\sqrt{2}\left(3\sqrt{3}-2\right)}+\dfrac{3}{\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}\)

\(=\dfrac{\sqrt{6}}{2}+\dfrac{\sqrt{3}}{\sqrt{3}+\sqrt{2}}\)

\(=\dfrac{\sqrt{6}}{2}+\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)\)

\(=\dfrac{\sqrt{6}}{2}+3-\sqrt{6}=\dfrac{6-\sqrt{6}}{2}\)

c, \(3\sqrt{2}-2\sqrt{3}+2\sqrt{3}+3\sqrt{2}=6\sqrt{2}\)

d, \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}=\sqrt{\left(\sqrt{6}-3\right)^2}+\sqrt{\left(2\sqrt{6}+3\right)^2}\)

\(=-\sqrt{6}+3+2\sqrt{6}+3=\sqrt{6}+6\)

e, Ghi đúng đề.

\(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}=\dfrac{a+b-2\sqrt{ab}+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\sqrt{a}+\sqrt{b}-\sqrt{a}+\sqrt{b}=2\sqrt{b}\)

25 tháng 11 2020

học dốt quá

25 tháng 11 2020

Cho sửa phần mẫu số của câu trên thành \(\sqrt{6}+\sqrt{2}\)

\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{5-|2\sqrt{3}+1|}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{4+2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+|\sqrt{3}-1|}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{2+\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{\sqrt{2}.\sqrt{4+2\sqrt{3}}}{\sqrt{2}\left(\sqrt{3}+1\right)}\)

\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{3}+1}\)

\(=\frac{\sqrt{3}+1}{\sqrt{3}+1}=1\)

5 tháng 10 2020

b) \(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)\(=\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}=\sqrt{4+5}=3\)

Câu A=4

Cách giải:

\(\left(5\sqrt{3}+2\sqrt{12}-\sqrt{75}\right):\sqrt{3}\)

\(=\left(5\sqrt{3}+2\sqrt{4\cdot3}-\sqrt{25\cdot3}\right)\)\(:\sqrt{3}\)

\(=\left(5\sqrt{3}+4\sqrt{3}-5\sqrt{3}\right)\)\(:\sqrt{3}\)

 

17 tháng 1 2022

a) \(A=2\sqrt{8}-3\sqrt{32}+\sqrt{50}\)

\(A=2\sqrt{4.2}-3\sqrt{16.2}+\sqrt{25.2}\)

\(A=2.2\sqrt{2}-3.4\sqrt{2}+5\sqrt{2}\)

\(A=4\sqrt{2}-12\sqrt{2}+5\sqrt{2}\)

\(A=\left(4-12+5\right)\sqrt{2}\)

\(A=-3\sqrt{2}\)

b) \(B=\sqrt{12}+4\sqrt{27}-3\sqrt{48}\)

\(B=\sqrt{4.3}+4\sqrt{9.3}-3\sqrt{16.3}\)

\(B=2\sqrt{3}+4.3\sqrt{3}-3.4\sqrt{3}\)

\(B=2\sqrt{3}\)

c) \(C=\sqrt{20a}+4\sqrt{45a}-2\sqrt{125a}\left(a\ge0\right)\)

\(C=\sqrt{4.5a}+4\sqrt{9.5a}-2\sqrt{25.5a}\)

\(C=2\sqrt{5a}+4.3\sqrt{5a}-2.5\sqrt{5a}\)

\(C=2\sqrt{5a}+12\sqrt{5a}-10\sqrt{5a}\)

\(C=\left(2+12-10\right)\sqrt{5a}\)

\(C=4\sqrt{5a}\)

24 tháng 1 2022

a) ta có \(2\sqrt{8}=2\sqrt{4.2}=4\sqrt{2},3\sqrt{32}=3\sqrt{16.2}=12\sqrt{2},\sqrt{50}=\sqrt{25.2}=5\sqrt{2}\)                               \(\Rightarrow A=4\sqrt{2}-12\sqrt{2}+5\sqrt{2}=-3\sqrt{2}\)                                                                                              b) ta có \(\sqrt{12}=\sqrt{4.3}=2\sqrt{3},4\sqrt{27}=4\sqrt{9.3}=12\sqrt{3},3\sqrt{48}=3\sqrt{16.3}=12\sqrt{3}\Rightarrow B=2\sqrt{3}+12\sqrt{3}-12\sqrt{3}=26\sqrt{3}\)c) ta có \(\sqrt{20a}=\sqrt{4.5a}=2\sqrt{5a},4\sqrt{45a}=4\sqrt{9.5a}=12\sqrt{5a},2\sqrt{125a}=2\sqrt{25.5a}=10\sqrt{5a}\Rightarrow C=2\sqrt{5a}+12\sqrt{5a}-10\sqrt{5a}=4\sqrt{5a}\)