Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 16x2 + y2 + 4y - 16x - 8xy = ( 16x2 - 8xy + y2 ) - ( 16x - 4y )
= ( 4x - y )2 - 4 . ( 4x - y )
= ( 4x - y ) . ( 4x - y - 4 )
a) 3x2 - 7x + 2
= 3x2 - 6x - x + 2
= (3x2 - 6x) - (x - 2)
= 3x (x - 2) - (x - 2)
= (3x - 1) (x - 2)
Ta có:
a) 6x2y - 3y2 - 2x2 + y = (6x2y - 2x2) - (3y2 - y) = 2x2(3y - 1) - y(3y - 1) = (2x2 - y)(3y - 1)
b) 2x2 + x - 4xy - 2y + 2x + 1 = (x2 + x) - (4xy + 2y) + (x2 + 2x + 1) = x(x + 1) - 2y(2x + 1) + (x + 1)2
= (x + x + 1)(x + 1) - 2y(2x + 1) = (2x + 1)(x + 1) - 2y(2x + 1) = (2x + 1)(x + 1 - 2y)
c) 16x2y - 4xy2 - 4x3 + x2y = 4xy(4x - y) - x2(4x - y) = (4xy - x2)(4x - y)
d) 4x2 - 20x + 25 - 36y2 = (2x - 5)2 - (6y)2 = (2x - 5 - 6y)(2x - 5 + 6y)
e) x2 - 4y2 + 6x - 4y + 8 = (x2 + 6x + 9) - (4y2 + 4y + 1) = (x + 3)2 - (2y + 1)2 = (x + 3 - 2y - 1)(x + 3 + 2y + 1) = (x + 2 - 2y)(x + 4 + 2y)
g) Ta có : x10 + x5 + 1
= (x10 - x) + (x5 - x2) + (x2 + x + 1)
= x(x9 - 1) + x2(x3 - 1) + (x2 + x + 1)
= x(x3 - 1)(x6 + x3 + 1) + x2(x3 - 1) + (x2 + x + 1)
= (x7 + x4 + x)(x - 1)(x2 + x + 1) + x2(x - 1)(x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)(x8 - x7 + x 5 - x4 + x2 - x + x4 + x3 + x2 + 1)
= (x2 + x + 1)(x8 - x7 + x5 + x3 - x + 1)
h) TT trên (dài dòng ktl)
1, <=> \(\left(4x\right)^2-\left(9y\right)^2\)=\(\left(4x-9y\right)\left(4x+9y\right)\)
1) \(16x^2-81.y^2=\left(4x\right)^2-\left(9.y\right)^2=\left(4x-9y\right)\left(4x+9y\right)\)
2) \(\left(5x-3y\right)^2-\left(3x-5y\right)^2=\left(5x-3y-3x+5y\right)\left(5x-3y+3x-5y\right)=\left(2x+2y\right).\left(8x-8y\right)\)
\(=16.\left(x+y\right)\left(x-y\right)\)
3)\(4x^2-y^2+4y-4=4x^2-\left(y^2-4y+4\right)=\left(2x\right)^2-\left(y-2\right)^2=\left(2x-y+2\right).\left(2x+y-2\right)\)
4)\(9.\left(x-y\right)^2-16.\left(2x+y\right)^2=3^2.\left(x-y\right)^2-4^2.\left(2x+y\right)^2=\left(3x-3y\right)^2-\left(8x+4y\right)^2\)
\(=\left(3x-3y-8x-4y\right)\left(3x-3y+8x+4y\right)=\left(-5x-7y\right).\left(11x+y\right)\)
a) \(=\left(x-2y\right)\left(x^2+5x\right)\)
b) \(=\left(x-1\right)\left(x^2+2x+1\right)=\left(x-1\right)\left(x+1\right)^2\)
c) \(=\left(x^2+1-2x\right)\left(x^2+1+2x\right)\)
\(=\left(x^2-2x+1\right)\left(x^2+2x+1\right)\)
\(=\left(x-1\right)^2\left(x+1\right)^2\)
d) \(=3\left(x+3\right)-\left(x-3\right)\left(x+3\right)\)
\(=\left(x+3\right)\left(3-x+3\right)\)
\(=\left(x+3\right)\left(6-x\right)\)
e) \(=\left(x^2-\frac{1}{3}x\right)\left(x^2+\frac{1}{3}x\right)\)
f) \(=2x\left(x-y\right)-16\left(x-y\right)\)
\(=2\left(x-y\right)\left(x-8\right)\)
\(a)\)
\(4x^2-y^2+2x+y\)
\(=\left(4x^2-y^2\right)+\left(2x+y\right)\)
\(=\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)\)
\(=\left(2x+y\right)\left(2x-y+1\right)\)
\(b)\)
\(x^3+2x^2-6x-27\)
\(=x^3+5x^2+9x-3x^2-15x-27\)
\(=x\left(x^2+5x+9\right)-3\left(x^2+5x-9\right)\)
\(=\left(x-3\right)\left(x^2+5-9\right)\)
\(c)\)
\(12x^3+4x^2-27x-9\)
\(=\left(12x^3+4x^2\right)-\left(27x+9\right)\)
\(=4x^2\left(3x+1\right)-9\left(3x+1\right)\)
\(=\left(3x+1\right)\left(4x^2-9\right)\)
\(=\left(3x+1\right)[\left(2x\right)^2-3^2]\)
\(=\left(3x+1\right)\left(2x-3\right)\left(2x+3\right)\)
\(d)\)
\(16x^2+4x-y^2+y^2\)
\(=16x^2+4x\)
\(4x\left(4x+1\right)\)
a,X^3-16x =x(x^2-16)
b,y(y-2)-3(y-2)=(y+3).(y-2)
c,x^2+4x+4-y^2=(x+2)^2-y^2=(x+y+2).(x+2-Y)
D,4^2y^3-12x^2y^4+16X^5y^3=4x^2y^2(y-3y^2+4X^3y)
a) \(3x^2-3y^2=3\left(x^2-y^2\right)=3\left(x-y\right)\left(x+y\right)\)
b) \(x^2-xy+7x-7y=\left(x^2+7x\right)-\left(xy+7y\right)\)
\(=x\left(x+7\right)-x\left(y+7\right)=x\left(x+7-y-7\right)=x\left(x-y\right)\)
c)\(x^2-3x+2=x^2-2x-x+2=\left(x^2-x\right)-\left(2x-2\right)\)
\(=x\left(x-1\right)-2\left(x-1\right)=\left(x-2\right)\left(x-1\right)\)
d) \(x^3+2x^2y+xy^2-16x=x\left(x^2+2xy+y^2-16\right)\)
\(=x\left[\left(x+y\right)^2-16\right]=x\left(x+y-4\right)\left(x+y+4\right)\)
\(16x^2+y^2+4y-16x-8xy\)
\(=\left(4x-y\right)^2-4\left(4x-y\right)\)
\(=\left(4x-y\right)\left(4x-y-4\right)\)
a) \(16x^2+y^2+4y-16x-8xy\)
\(=\left(4x\right)^2-8xy+y^2+4\left(y-4x\right)\)
\(=\left(4x-y\right)^2+4\left(y-4x\right)\)
\(=\left(y-4x\right)^2+4\left(y-4x\right)=\left(y-4x\right)\left(y-4x+4\right)\)