K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(log_3\left(2^x-1\right)=4\)

=>\(2^x-1=3^4=81\)

=>\(2^x=82\)

=>\(x=log_282\)

NV
25 tháng 2 2020

\(a=\lim\limits_{x\rightarrow3}\frac{\left(x-3\right)\left(2x+3\right)}{\left(x-3\right)\left(x^3+3x^2+9x\right)}=\lim\limits_{x\rightarrow3}\frac{2x+3}{x^3+3x^2+9x}=\frac{2.3+3}{3^3+2.3^2+9.3}=...\)

\(b=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x^4+x^2+2x^3+2x+2\right)}=\frac{1+1}{1+1+2+2+2}=...\)

\(c=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)^2\left(4x^3+3x^2+2x+1\right)}{\left(x-1\right)^2\left(x^2+x+2\right)}=\frac{4+3+2+1}{1+1+2}=...\)

\(d=\lim\limits_{x\rightarrow-1}\frac{\left(x+1\right)\left(x^4-x^3+x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{1+1+1+1+1}{1+1+1}=...\)

26 tháng 5 2021

\(Lim_{x\rightarrow3}\frac{x^4-27x}{2x^2-3x-9}=Lim_{x\rightarrow3}\frac{x\left(x^3-3^3\right)}{\left(x-3\right)\left(2x+3\right)}\)

\(=Lim_{x\rightarrow3}\frac{x\left(x-3\right)\left(x^2+3x+9\right)}{\left(x-3\right)\left(2x+3\right)}=Lim_{x\rightarrow3}\frac{x\left(x^2+3x+9\right)}{2x+3}\)

\(=\frac{3\left(3^2+3.3+9\right)}{3.2+3}=\frac{3\left(9+9+9\right)}{9}=9\)

Vậy \(Lim_{x\rightarrow3}\frac{x^4-27x}{2x^2-3x-9}=9\)

NV
16 tháng 6 2019

\(\left(2x+3\right)^{10}=a_0+a_1x+a_2x^2+...+a_{10}x^{10}\)

Thay \(x=1\) vào ta được:

\(5^{10}=a_0+a_1+a_2+...+a_{10}\)

Thay \(x=-1\) vào ta được:

\(\left(-2+3\right)^{10}=a_0-a_1+...+a_{10}=1^{10}=1\)

NV
3 tháng 10 2020

\(\left(1+x\right)\left(1+2x\right)...\left(1+nx\right)-1\)

\(=x+\sum\limits^n_{k=2}kx\left(1+x\right)...\left(1+\left(k-1\right)x\right)\)

\(=x+\sum\limits^n_{k=2}kx\left[\left(1+x\right)...\left(1+\left(k-1\right)x\right)-1+1\right]\)

\(=\sum\limits^n_{k=1}kx+\sum\limits^n_{k=2}kx\left[\left(1+x\right)\left(1+2x\right)...\left(1+\left(k-1\right)x\right)-1\right]\)

\(=\sum\limits^n_{k=1}kx+\sum\limits^n_{k=2}kx\left(\sum\limits^{k-1}_{i=1}ix\left(1+x\right)\left(1+2x\right)...\left(1-\left(i-1\right)x\right)\right)\)

Do đó tổng của các hệ số chứa \(x^2\) là: \(\sum\limits^n_{k=2}k\left(\sum\limits^{k-1}_{i=1}i\right)\)

Hay \(a_2=\sum\limits^n_{k=2}k\left(\frac{k\left(k-1\right)}{2}\right)=\sum\limits^n_{k=2}\frac{k^2\left(k-1\right)}{2}\)

Do đó:

\(S=1+\sum\limits^{2019}_{k=2}\frac{k^2\left(k-1\right)}{2}+\sum\limits^{2019}_{k=2}k^2=1+\sum\limits^{2019}_{k=2}\left(\frac{k^2\left(k-1\right)}{2}+k^2\right)\)

\(=1+\sum\limits^{2019}_{k=2}\left(\frac{k^2\left(k+1\right)}{2}\right)\)

3 tháng 10 2020

thanks,đã giúp r mong bạn giúp luôn câu hình học mk vs

NV
23 tháng 4 2019

Xét khai triển:

\(\left(x+1\right)^n=C_n^0+C_n^1x+C_n^2x^n+C_n^3x^3+...+C_n^nx^n\)

Đạo hàm 2 vế:

\(n\left(x+1\right)^{n-1}=C_n^1+2C_n^2x+3C_n^3x^2+...+nC_n^nx^{n-1}\)

Thay \(x=1\) vào ta được:

\(n.2^{n-1}=C_n^1+2C_n^2+3C_n^3+...+nC_n^2=256n\)

\(\Rightarrow2^{n-1}=256=2^8\Rightarrow n=9\)

Câu 2:

\(\left(x-2\right)^{80}=a_0+a_1x+a_2x^2+a_3x^3+...+a_{80}x^{80}\)

Đạo hàm 2 vế:

\(80\left(x-2\right)^{79}=a_1+2a_2x+3a_3x^2+...+80a_{80}x^{79}\)

Thay \(x=1\) ta được:

\(80\left(1-2\right)^{79}=a_1+2a_2+3a_3+...+80a_{80}\)

\(\Rightarrow S=80.\left(-1\right)^{79}=-80\)

23 tháng 4 2019

cảm ơn anh

30 tháng 11 2019

\(\Delta=\left(C^x_4\right)^2-4.C^2_3.C^1_3=\left(\frac{4!}{x!\left(4-x\right)!}\right)^2-36\)

Pt có nghiệm \(\Leftrightarrow\Delta\ge0\)

\(\Leftrightarrow x!.\left(4-x\right)!\le4\)

x>=5 -> ko tồn tại (4-x)!

-> x<=4

Thay vào ta thấy x=2 tm

-> \(\Delta=0\)

->\(y=\frac{-\left(-C^x_4\right)}{2}=\frac{C^2_4}{2}=3\)

Vậy pt có nghiệm duy nhất y=3

NV
28 tháng 2 2020

Do quá làm biếng dùng Hoocne tách nhân tử nên chúng ta sẽ sử dụng L'Hopital:

\(\lim\limits_{x\rightarrow1}\frac{4x^6-5x^5+x}{x^2-2x+1}=\lim\limits_{x\rightarrow1}\frac{24x^5-25x^4+1}{2x-2}=\lim\limits_{x\rightarrow1}\frac{120x^4-100x^3}{2}=\frac{120-100}{2}=10\)

\(\lim\limits_{x\rightarrow-3}\frac{x^4-6x^2-27}{x^3+3x^2+x+3}=\lim\limits_{x\rightarrow-3}\frac{4x^3-12x}{3x^2+6x+1}=\frac{-36}{5}\)

\(\lim\limits_{x\rightarrow-2}\frac{2x^3+x^2+12}{-x^2-6x-8}=\lim\limits_{x\rightarrow-2}\frac{6x^2+2x}{-2x-6}=-10\)

\(\lim\limits_{x\rightarrow-2}\frac{-2x^3+x-14}{-2x^3-x^2-12}=\lim\limits_{x\rightarrow-2}\frac{-6x^2+1}{-6x^2-2x}=\frac{23}{20}\)

Con cuối ko phải tích phân dạng vô định \(\frac{0}{0}\) bạn cứ thế thẳng -2 vào là được

NV
20 tháng 9 2020

1.

Các hàm \(sinx;sin\frac{x}{2};sin\frac{x}{3};...;sin\frac{x}{10}\) có chu kì lần lượt là \(2\pi;4\pi;6\pi;...;20\pi\)

\(\Rightarrow\) Chu kì của hàm đã cho là \(BCNN\left(2\pi;4\pi;...;20\pi\right)=15120\pi\)

2.

a.

\(y=cos^22x+3cos2x+3\)

\(y=\left(cos2x+1\right)\left(cos2x+2\right)+1\ge1\Rightarrow y_{min}=1\) khi \(cos2x=-1\)

\(y=\left(cos2x-1\right)\left(cos2x+4\right)+7\le7\Rightarrow y_{max}=7\) khi \(cos2x=1\)

b.

Đặt \(a=4sinx-3cosx\Rightarrow a^2\le\left(4^2+\left(-3\right)^2\right)\left(sin^2x+cos^2x\right)=25\)

\(\Rightarrow-5\le a\le5\)

\(y=a^2-4a+1\) với \(a\in\left[-5;5\right]\)

\(y=\left(a-2\right)^2-3\ge-3\Rightarrow y_{min}=-3\) khi \(a=2\)

\(y=\left(a-9\right)\left(a+5\right)+46\le46\Rightarrow y_{max}=46\) khi \(a=-5\)

21 tháng 9 2020

Em ko hiểu câu 2a

NV
13 tháng 3 2020

\(\lim\limits_{x\rightarrow\infty}\frac{\left(x-1\right)^2\left(7x+2\right)^2}{\left(2x+1\right)^4}=\lim\limits_{x\rightarrow\infty}\frac{x^2\left(1-\frac{1}{x}\right)^2.x^2\left(7+\frac{2}{x}\right)^2}{x^4\left(2+\frac{1}{x}\right)^4}=\frac{1.7^2}{2^4}=\frac{49}{16}\)

NV
6 tháng 3 2020

\(u_3+u_7+...+u_{35}=u_1q^2+u_1q^6+...+u_1q^{34}\)

\(=u_1q^2\left(1+q^4+q^8+...+q^{32}\right)=u_1q^2.\frac{\left(q^4\right)^9-1}{q^4-1}=524286\)

2/ \(u_1^2+u_2^2+...+u_{20}^2=u_1^2+u_1^2q^2+u_1^2q^4+...+u_1^2q^{38}\)

\(=u_1^2\left(1+q^2+q^4+...+q^{38}\right)=u_1^2\frac{\left(q^2\right)^{20}-1}{q^2-1}=\frac{3^{20}-1}{2}\)

NV
6 tháng 3 2020

3/

\(u_1=2;u_n=18\)

\(u_1^2+u_2^2+...+u_n^2=484\)

\(\Leftrightarrow u_1^2+u_1^2q^2+...+u_1^2q^{2\left(n-1\right)}=484\)

\(\Leftrightarrow u_1^2\left(1+q^2+...+q^{2\left(n-1\right)}\right)=484\)

\(\Leftrightarrow1+q^2+...+q^{2\left(n-1\right)}=121\)

\(\Leftrightarrow\frac{q^{2n}-1}{q^2-1}=121\)

\(u_n=u_1q^{n-1}\Rightarrow q^{n-1}=\frac{u_n}{u_1}=9\Rightarrow q^n=9q\Rightarrow q^{2n}=81q^2\)

\(\Rightarrow\frac{81q^2-1}{q^2-1}=121\Rightarrow81q^2-1=121q^2-121\)

\(\Rightarrow q^2=3\Rightarrow q=\pm\sqrt{3}\)