K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=-3xy^2z^3:\dfrac{3}{4}xyz=-3\cdot\dfrac{4}{3}\cdot\left(x:x\right)\cdot\left(y^2:y\right)\cdot\left(z^3:z\right)=-4yz^2\)

b: \(=\left(2:\dfrac{3}{4}\right)\cdot\dfrac{\left(x+y\right)^3}{\left(x+y\right)^2}=\dfrac{8}{3}\left(x+y\right)\)

c: \(=\left(x+y-z\right)^3\)

10 tháng 7 2018

Cái nè k cần làm nhé

`#3107`

`a)`

`A=`\(3x^4 + \dfrac{1}3xyz - 3x^4 - \dfrac{4}3xyz + 2x^2y - 6z\)

`= (3x^4 - 3x^4) + (1/3xyz - 4/3xyz) + 2x^2y - 6z`

`= -xyz + 2x^2y - 6z`

Thay `x = 1; y = 3` và `z = 1/3` vào A

`A = -1*3*1/3 + 2*1^2*3 - 6*1/3`

`= -1 + 6 - 2`

`= 6 - 3`

`= 3`

Vậy, `A=3`

`b)`

`B=`\(4x^3 - \dfrac{2}7xyz - 4x^3 - \dfrac{4}3xyz + 4x^2y\)

`= (4x^3 - 4x^3) + (-2/7xyz - 4/3xyz) + 4x^2y`

`= -34/21 xyz + 4x^2y`

Thay `x = -1; y = 2` và `z = -1/2` vào B

`B = -34/21*(-1)*2*(-1/2) + 4*(-1)^2 * 2`

`= -34/21 + 8`

`= 134/21`

Vậy, `B = 134/21`

`c)`

`C=`\(4x^2 + \dfrac{1}2xyz - \dfrac{2}3xy^2z - 5x^2yz + \dfrac{3}4xyz\)

`= 4x^2 + (1/2xyz + 3/4xyz) - 2/3xy^2z - 5x^2yz `

`= 4x^2 + 5/4xyz - 2/3xy^2z - 5x^2yz`

Ta có:

`|y| = 2`

`=> y = +-2`

Thay `x = -1; y = 2` và `z = 1/2` vào C

`4*(-1)^2 + 5/4*(-1)*2*1/2 - 2/3*(-1)*2^2*1/2 - 5*(-1)^2*2*1/2`

`= 4 - 5/4 + 4/3 - 5`

`= -11/12`

Vậy, với `x = -1; y = 2; z = 1/2` thì `B = -11/12`

Thay `x = -1; y = -2; z = 1/2`

`B = 4*(-1)^2 + 5/4*(-1)*(-2)*1/2 - 2/3*(-1)*(-2)^2*1/2 - 5*(-1)^2*(-2)*1/2`

`= 4 + 5/4 + 4/3 + 5`

`= 139/12`

Vậy, với `x = -1; y = -2; z = 1/2` thì `B = 139/12.`

19 tháng 2 2018

8 tháng 8 2017

1) 2x2-8xy-5x+20y

=2x(x-4y)-5(x-4y)

=(2x-5)(x-4y)

2) x3-x2y-xy+y2

=x2(x-y)-y(x-y)

=(x2-y)(x-y)

3) x2-2xy-4z2+y2

=(x-y)2-(2z)2

=(x-y-2z)(x-y+2z)

4) a3+a2b-a2c-abc

=a2(a+b)-ac(a+b)

=(a2-ac)(a+b)

=a(a-c)(a+b)

5) x3+y3+3x2y+3xy2-x-y

=(x+y)(x2-xy+y2)+3xy(x+y)-(x+y)

=(x+y)(x2-xy+y2+3xy-1)

=(x+y)[(x+y)2-1)]

=(x+y)(x+y+1)(x+y-1)

6) x3+x2y-x2z-xyz

=x2(x+y)-xz(x+y)

=(x2-xz)(x+y)

=x(x-z)(x+y)

7) =[x(y+z)2-2xyz]+[y(z+x)2-2xyz]+z(x+y)2

=x(y2+z2)+y(z2+x2)+z(x+y)2

=xy(x+y)+z2(x+y)+z(x+y)2

=(x+y)(xy+z2+zx+zy)

=(x+y)(x+z)(y+z)

8) x3(z-y)+y3(x-z)+z3(y-x)

Tách x-z= -[z-y+y-x]

20 tháng 8 2017

\(A=\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)=\left(x-y+z\right)\left[\left(x-y+z\right)+2\left(y-z\right)\right]+\left(z-y\right)^2=\left(x-y+z\right)\left[x+y-z\right]+\left(z-y\right)^2\)\(A=x^2-\left(y-z\right)^2+\left(z-y\right)^2=x^2\)

17 tháng 12 2023

a: \(2x^2+3xy-14y^2\)

\(=2x^2+7xy-4xy-14y^2\)

\(=\left(2x^2+7xy\right)-\left(4xy+14y^2\right)\)

\(=x\left(2x+7y\right)-2y\left(2x+7y\right)\)

\(=\left(2x+7y\right)\left(x-2y\right)\)

b: \(\left(x-7\right)\left(x-5\right)\left(x-3\right)\left(x-1\right)+7\)

\(=\left(x-7\right)\left(x-1\right)\left(x-5\right)\left(x-3\right)+7\)

\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)+7\)

\(=\left(x^2-8x\right)^2+15\left(x^2-8x\right)+7\left(x^2-8x\right)+105+7\)

\(=\left(x^2-8x\right)^2+22\left(x^2-8x\right)+112\)

\(=\left(x^2-8x\right)^2+8\left(x^2-8x\right)+14\left(x^2-8x\right)+112\)

\(=\left(x^2-8x\right)\left(x^2-8x+8\right)+14\left(x^2-8x+8\right)\)

\(=\left(x^2-8x+8\right)\left(x^2-8x+14\right)\)

c: \(\left(x-3\right)^2+\left(x-3\right)\left(3x-1\right)-2\left(3x-1\right)^2\)

\(=\left(x-3\right)^2+2\left(x-3\right)\left(3x-1\right)-\left(x-3\right)\left(3x-1\right)-2\left(3x-1\right)^2\)

\(=\left(x-3\right)\left[\left(x-3\right)+2\left(3x-1\right)\right]-\left(3x-1\right)\left[\left(x-3\right)+2\left(3x-1\right)\right]\)

\(=\left(x-3+6x-2\right)\left(x-3-3x+1\right)\)

\(=\left(7x-5\right)\left(-2x-2\right)\)

\(=-2\left(x+1\right)\left(7x-5\right)\)

d: \(xy\left(x-y\right)+yz\left(y-z\right)+zx\left(z-x\right)\)

\(=x^2y-xy^2+y^2z-yz^2+zx\left(z-x\right)\)

\(=\left(x^2y-yz^2\right)-\left(xy^2-y^2z\right)+xz\left(z-x\right)\)

\(=y\left(x^2-z^2\right)-y^2\left(x-z\right)-xz\left(x-z\right)\)

\(=y\cdot\left(x-z\right)\left(x+z\right)-\left(x-z\right)\left(y^2+xz\right)\)

\(=\left(x-z\right)\left(xy+zy-y^2-xz\right)\)

\(=\left(x-z\right)\left[\left(xy-y^2\right)+\left(zy-zx\right)\right]\)

\(=\left(x-z\right)\left[y\cdot\left(x-y\right)-z\left(x-y\right)\right]\)

\(=\left(x-z\right)\left(x-y\right)\left(y-z\right)\)

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x -...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

1, 2x2 - 8xy - 5x + 20y

= (2x2 - 5x) - (8xy - 20y)

= x(2x - 5) - 4y(2x - 5)

= (2x - 5) (x - 4y)

2,  x- x2y - xy + y2

= (x3 - xy) - (x2y - y2)

= x(x2 - y) - y(x2 - y)

= (x2 - y) (x - y)

3, x2 - 2xy - 4z+ y2

= (x2 - 2xy + y2) - 4z2

= (x - y)2 - (2z)2 

= (x - y - 2z) (x - y + 2z)

4, a3 + a2b - a2c - abc

= (a3 - a2c) + (a2b - abc)

= a2(a - c) + ab(a - c)

= (a - c) (a2 + ab)

5, x+ y3 + 3x2y + 3xy- x - y

= (x3 + 3x2y + 3xy2 + y3) - (x + y)

= (x + y) 3 - (x + y)

= (x + y) [(x + y)2 - 1]

= (x + y) (x + y - 1) (x + y + 1)

4 tháng 10 2018

chịu thôi tớ ko biết