\(A=\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}va20\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2019

A  <  20

học tốt

17 tháng 7 2019

Ta thấy :

\(A=\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}< \sqrt{12,25}+\sqrt{20,25}+\sqrt{30,25}+\sqrt{42,25}=20\)

\(\Rightarrow A< 20\)

Vậy A < 20

~Study well~

#KSJ

8 tháng 12 2016

19 bé hơn

23 tháng 12 2016

19 lớn hơn hoặc bằng

11 tháng 8 2015

Dễ

Bình phương cả 2 vế ta đc

42+2 và 40+2+2.\(4\sqrt{5}\)

42+2 và 42+2.\(4\sqrt{5}\)

Ta thấy \(4\sqrt{5}\)  >2

Suy ra 42+2<42+2.\(4\sqrt{5}\)

=>\(\sqrt{42+2}<\sqrt{40}+\sqrt{2}\)

11 tháng 8 2015

Ta có:\(\left(\sqrt{42+2}\right)^2=44\)(1)

\(\left(\sqrt{40}+\sqrt{2}\right)^2=44+2\sqrt{80}\)(2)

Do (1)<(2)

=>\(\sqrt{42+2}<\sqrt{40}+\sqrt{2}\)

ban viet chu mau trang à?

16 tháng 3 2017

A < B

31 tháng 10 2018

ghi de sai ban oi

31 tháng 10 2018

\(A=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}\)

\(A< \sqrt{2,25}+\sqrt{6,25}+\sqrt{12,25}+\sqrt{20,25}+\sqrt{30,25}+\sqrt{42,25}=24=B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

19 tháng 7 2019

\(\sqrt{27}-\sqrt{12}-\sqrt{2016}>\sqrt{25}-\sqrt{16}-\sqrt{2025}\)

\(=5-4-45=-44\)

Vậy \(\sqrt{27}-\sqrt{12}-\sqrt{2016}>-44\)

19 tháng 7 2019

Có : \(\sqrt{12}< \sqrt{16}=4\)

         \(\sqrt{2016}< \sqrt{2025}\)         => \(\sqrt{12}+\sqrt{2016}< 4+45\)

                                                                 => \(-\sqrt{12}-\sqrt{2016}>-49\)(1)

Lại có : \(\sqrt{27}>\sqrt{25}=5\)(2)

Từ (1),(2) có : \(\sqrt{27}-\sqrt{12}-\sqrt{2016}>5-49\)or \(\sqrt{27}-\sqrt{12}-\sqrt{2016}>-44\)

17 tháng 12 2018

\(\sqrt{27}-\sqrt{12}-\sqrt{2016}>\)-44

23 tháng 12 2016

A=√2+√6+√12+√20+√30+√42

A= 23.7579

B= 24

vậy => B > A

2 tháng 11 2016

giúp mk với

16 tháng 8 2016

Bình 2 phương \(\sqrt{40+2}\) và \(\sqrt{40}+\sqrt{2}\) đc

\(\sqrt{\left(40+2\right)^2}=42\)

\(\left(\sqrt{40}+\sqrt{2}\right)^2=40+2+2\sqrt{40\cdot2}=42+2\sqrt{80}\)

Ta thấy:\(42+2\sqrt{80}>42\)

\(\Rightarrow\sqrt{40}+\sqrt{2}>\sqrt{40+2}\)