Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt cả biểu thức to là $P$
Với mọi số tự nhiên $n$, áp dụng định lý Fermat nhỏ:
\(n^7\equiv n\pmod 7\) \(\Leftrightarrow n^7-n\vdots 7(1)\)
\(n^7-n=n(n^6-1)=n(n-1)(n+1)(n^2+n+1)(n^2-n+1)\) có $n(n-1)(n+1)$ là tích 3 số nguyên liên tiếp nên $n(n-1)(n+1)\vdots 6$
\(\Rightarrow n^7-n\vdots 6(2)\)
Từ \((1);(2)\Rightarrow n^7-n\vdots 42\) hay \(n^7\equiv n\pmod {42}\) (do 6 và 7 nguyên tố cùng nhau)
Áp dụng tính chất trên vào bài toán:
\([(27n+5)^7+10]^7\equiv (27n+5)^7+10\equiv 27n+5+10\pmod {42}(*)\)
\([(10n+27)^7+5]^7\equiv (10n+27)^7+5\equiv 10n+27+5\pmod {42}(**)\)
\([(5n+10)^7+27]^7\equiv (5n+10)^7+27\equiv 5n+10+27\pmod {42}(***)\)
Cộng theo vế:
\(\Rightarrow P\equiv 27n+5+10+10n+27+5+5n+10+27\)
\(\equiv 42n+84\equiv 0\pmod {42}\)
Hay $P\vdots 42$
Ta có đpcm.
\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\left(1\right)\\y^2+xy-yz+z^2=0\left(2\right)\\x^2-xy-xz-z^2=2\left(3\right)\end{matrix}\right.\)
Lấy (2) cộng (3) ta được
\(x^2+y^2-yz-zx=2\) (4)
Lấy (1) - (4) ta được
\(2x\left(x+z\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-z\end{matrix}\right.\)
Xét 2 TH rồi thay vào tìm được y và z
1. \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{6}{5}\\\dfrac{y+z}{yz}=\dfrac{3}{2}\\\dfrac{z+x}{zx}=\dfrac{7}{10}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{5}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{7}{10}\end{matrix}\right.\)
Đến đây thì dễ rồi nhé
a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)
=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75
=>x=7; y=5
b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)
=>4x+9y=8 và -8x+3y=5
=>x=-1/4; y=1
c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)
=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5
=>2x-3y=-5,5 và 3x-2y=-4,5
=>x=-1/2; y=3/2
e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)
=>\(x=\sqrt{2};y=\sqrt{3}\)
a) \(\left\{{}\begin{matrix}\left(x+3\right)\left(y+5\right)=\left(x+1\right)\left(y+8\right)\\\left(2x-3\right)\left(5y+7\right)=2\left(5x-6\right)\left(y+1\right)\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}xy+5x+3y+15=xy+8x+y+8\\10xy+14x-15y-21=10xy+10x-12y-12\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}-3x+2y=-7\\4x-3y=9\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}-9x+6y=-21\\8x-6y=18\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}-x=-3\\8x-6y=18\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=3\\8.3-6y=18\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm (x;y)=(3;1)
b) ĐKXĐ:\(\left\{{}\begin{matrix}2y-5\ne0\\3y-4\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y\ne\dfrac{5}{2}\\y\ne\dfrac{4}{3}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{2x-3}{2y-5}=\dfrac{3x+1}{3y-4}\\2\left(x-3\right)-3\left(y+2\right)=-16\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}\left(2x-3\right)\left(3y-4\right)=\left(3x+1\right)\left(2y-5\right)\\2x-6-3y-6=-16\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}6xy-8x-9y+12=6xy-15x+2y-5\\2x-3y=-4\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}7x-11y=-17\\2x-3y=-4\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}14x-22y=-34\\14x-21y=-28\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}14x-22y=-34\\-y=-6\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}14x-22.6=-34\\y=6\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=7\left(TM\right)\\y=6\left(TM\right)\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm (x;y)=(7;6)
a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(y+3\right)=xy+100\\\left(x-2\right)\left(y-2\right)=xy-64\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+2y=94\\-2x-2y=-68\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=26\\y=8\end{matrix}\right.\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}-3x+2y=0\\-x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
c: \(\Leftrightarrow\left\{{}\begin{matrix}xy-2x=xy-4x+2y-8\\2xy+7x-6y-21=2xy+6x-7y-21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-2y=-8\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\)
1,ĐK: \(x,y\ne-2\)
HPT<=> \(\left\{{}\begin{matrix}x\left(x+2\right)+y\left(y+2\right)=\left(x+2\right)\left(y+2\right)\left(1\right)\\x^2\left(x+2\right)^2+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x^2\left(x+2\right)^2+2xy\left(x+2\right)\left(y+2\right)+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\\x^2\left(x+2\right)^2+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\end{matrix}\right.\)
=> \(2xy\left(x+2\right)\left(y+2\right)=0\)
<=>\(2xy=0\) (do x+2 và y+2 \(\ne0\))
<=> \(\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Tại x=0 thay vào (1) có: \(y\left(y+2\right)=2\left(y+2\right)\) <=> y= \(\pm2\) => y=2 (vì y khác -2)
Tại y=0 thay vào (1) có: \(x\left(x+2\right)=2\left(x+2\right)\) => x=2
Vậy HPT có 2 nghiệm duy nhất (2,0),(0,2)
2, ĐK: \(y\ne-1\)
HPT <=> \(\left\{{}\begin{matrix}x^2=2\left(x+3\right)\left(y+1\right)\left(1\right)\\\frac{3x^2}{y+1}=4-x\end{matrix}\right.\)
=> \(\frac{6\left(3+x\right)\left(y+1\right)}{y+1}=4-x\)
<=> 6(x+3)=4-x
<=> \(14=-7x\)
<=> \(x=-2\) thay vào (1) có \(4=2\left(y+1\right)\)
<=>y=1\(\)( tm)
Vậy hpt có một nghiệm duy nhất (-2,1)
3,\(\left\{{}\begin{matrix}x^2-y=y^2-x\left(1\right)\\x^2-x=y+3\left(2\right)\end{matrix}\right.\)
PT (1) <=> \(\left(x-y\right)\left(x+y\right)+\left(x-y\right)=0\)
<=> (x-y)(x+y+1)=0
<=>\(\left[{}\begin{matrix}x=y\\y=-x-1\end{matrix}\right.\)
Tại x=y thay vào (2) có \(y^2-y=y+3\) <=> \(y^2-2y-3=0\) <=> (y-3)(y+1)=0 <=> \(\left[{}\begin{matrix}y=3\\y=-1\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Tại y=-1-x thay vào (2) có: \(x^2-x=-1-x+3\) <=> \(x^2=2\) <=> \(\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\) => \(\left[{}\begin{matrix}y=-1-\sqrt{2}\\y=-1+\sqrt{2}\end{matrix}\right.\)
Vậy hpt có 4 nghiệm (3,3),(-1,-1), ( \(\sqrt{2},-1-\sqrt{2}\)),( \(-\sqrt{2},-1+\sqrt{2}\))
4,\(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\left(1\right)\\xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}=5\left(2\right)\end{matrix}\right.\)(đk:\(x\ne0,y\ne0\))
<=> \(\left\{{}\begin{matrix}\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)=\frac{9}{2}\\\left(y+\frac{1}{y}\right)\left(x+\frac{1}{x}\right)=5\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+\frac{1}{x}=u\\y+\frac{1}{y}=v\end{matrix}\right.\)
Có \(\left\{{}\begin{matrix}u+v=\frac{9}{2}\\uv=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\v\left(\frac{9}{2}-v\right)=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\\left(v-\frac{5}{2}\right)\left(v-2\right)=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\\left[{}\begin{matrix}v=\frac{5}{2}\\v=2\end{matrix}\right.\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}v=\frac{5}{2}\\u=2\end{matrix}\right.\\\left[{}\begin{matrix}v=2\\u=\frac{5}{2}\end{matrix}\right.\end{matrix}\right.\)
Tại \(\left\{{}\begin{matrix}v=\frac{5}{2}\\u=2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x+\frac{1}{x}=2\\y+\frac{1}{y}=\frac{5}{2}\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y-2\right)\left(y-\frac{1}{2}\right)=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=1\\\left[{}\begin{matrix}y=2\\y=\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left[{}\begin{matrix}x=1\\y=\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
Tại \(\left\{{}\begin{matrix}v=2\\u=\frac{5}{2}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x+\frac{1}{x}=\frac{5}{2}\\y+\frac{1}{y}=2\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}\left(x-2\right)\left(x-\frac{1}{2}\right)=0\\\left(y-1\right)^2=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\end{matrix}\right.\\y=1\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left[{}\begin{matrix}x=\frac{1}{2}\\y=1\end{matrix}\right.\end{matrix}\right.\)
Vậy hpt có 4 nghiệm (1,2),( \(1,\frac{1}{2}\)) ,( 2,1),(\(\frac{1}{2},1\)).
10.
\(\left\{{}\begin{matrix}2x^2-3xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-2xy-xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(2x-y+1\right)=0\\x^2+x+1=y^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\y=2x+1\end{matrix}\right.\\x^2+x+1=y^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2+x+1=y^2\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x^2+x+1=y^2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2+x+1=x^2\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x^2+x+1=\left(2x+1\right)^2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x=-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\3x\left(x+1\right)=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=1\\\left[{}\begin{matrix}\left\{{}\begin{matrix}y=2x+1\\x=0\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x=-1\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y=-1\\\left\{{}\begin{matrix}x=0\\y=-\frac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=-1\\\left\{{}\begin{matrix}x=0\\y=-\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
\(\left\{{}\begin{matrix}y^2=\left(x+7\right)\left(x-2\right)\left(1\right)\\3x^2-4xy+y^2=4\left(1-x\right)\left(2\right)\end{matrix}\right.\)
Từ (2) <=> 3x2 - 4xy + y2 + 4x - 4 = 0
<=> (2x - y)2 - (x2 - 4x + 4) = 0
<=> (2x - y)2 - (x - 2)2 = 0
<=> \(\left(2x-y-x+2\right)\left(2x-y+x-2\right)=0\)
<=> \(\left(x-y+2\right)\left(3x-y-2\right)=0\)
<=> \(\left[{}\begin{matrix}x-y+2=0\\3x-y-2=0\end{matrix}\right.\)
TH1: x - y + 2 = 0 > y = x + 2 thay vào pt (1)
(x + 2)2 = (x + 7)(x - 2)
<=> x2 + 4x + 4 = x2 + 5x - 14
<=> x = 18 => y = 18 + 2 = 20
TH2: 3x - y - 2 = 0 <=> y = 3x - 2 thay vào pt (1)
(3x - 2)2 = (x + 7)(x - 2)
<=> 9x2 - 12x + 4 = x2 + 5x - 14
<=> 8x2 - 17x + 18 = 0
<=> 8(x2 - 17/8x + 289/256) + 287/32 = 0
<=> 8(x - 17/16)2 + 287/32 = 0
=> pt vô nghiệm
Vậy ...
1. \(\left\{{}\begin{matrix}3x^2+y^2+4xy=8\left(1\right)\\\left(x+y\right)\left(x^2+xy+2\right)=8\end{matrix}\right.\)
=> \(3x^2+3xy+xy+y^2=\left(x+y\right)\left(x^2+xy+2\right)\)
<=> \(\left(x+y\right)\left(3x+y\right)=\left(x+y\right)\left(x^2+xy+2\right)=0\)
<=> \(\left(x+y\right)\left(x^2+xy+2-3x-y\right)=0\)
<=> \(\left[{}\begin{matrix}x=-y\\x^2+xy+2-3x-y=0\end{matrix}\right.\)
TH1: x = -y thay vào pt (1), ta được:
3y2 + y2 - 4y2 = 8
<=> 0y = 8 (vô lí)
TH2: \(x^2+xy+2-3x-y=0\)
<=> x (x + y) - (x + y) - 2(x - 1) = 0
<=> (x - 1)(x + y) - 2(X - 1) = 0
<=> (x - 1)(x + y - 2) = 0
<=> \(\left[{}\begin{matrix}x=1\\x+y-2=0\end{matrix}\right.\)
Với x = 1 thay vào pt (1) -> 3 + y2 + 4y = 8
<=> y2 + 4y - 5 = 0 <=> (y + 5)(y - 1) = 0
<=> \(\left[{}\begin{matrix}y=-5\\y=1\end{matrix}\right.\)
Với x + y - 2 = 0 => x = 2 - y thay vào pt (1)
=> 3(2 - y)2 + y2 + 4(2 - y)y = 8
<=> 3y2 - 12y + 12 + y2 + 8 - 4y2 = 8
<=> 12 = 12y <=> y= 1 => x = 2 - 1 = 1
Vậy ....