K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 11 2019

\(\left(2^{\frac{1}{2}}+3^{\frac{1}{4}}\right)^{200}\) có SHTQ: \(C_{200}^k\left(2^{\frac{1}{2}}\right)^k\left(3^{\frac{1}{4}}\right)^{200-k}=C_{200}^k2^{\frac{k}{2}}.3^{50-\frac{k}{4}}\)

Do 2 và 3 nguyên tố cùng nhau nên số hạng là hữu tỉ khi và chỉ khi:

\(\left\{{}\begin{matrix}\frac{k}{2}\in N\\\frac{k}{4}\in N\\k\in N\end{matrix}\right.\) \(\Rightarrow k=4n\)

\(\Rightarrow\)\(\frac{200-0}{4}+1=51\) số hạng hữu tỉ

NV
4 tháng 11 2019

a/ \(\left(3^{\frac{1}{2}}+7^{\frac{1}{3}}\right)^{128}=\sum\limits^{128}_{k=0}C_{128}^k3^{\frac{k}{2}}.7^{\frac{128-k}{3}}\)

Do \(\left(3;7\right)=1\) nên để hạng tử là nguyên khi và chỉ khi:

\(\left\{{}\begin{matrix}\frac{k}{2}\in Z\\\frac{128-k}{3}\in Z\\0\le k\le128\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{k}{2}\in Z\\\frac{k+1}{3}\in Z\\0\le k\le128\end{matrix}\right.\) \(\Rightarrow k=6n+2\) (\(n\in N\))

\(0\le k\le128\Rightarrow0\le6n+2\le128\)

\(\Rightarrow0\le n\le21\Rightarrow\) có 22 hạng tử là số nguyên

b/\(\left(3^{\frac{1}{2}}+2^{\frac{3}{4}}\right)^{124}=\sum\limits^{124}_{k=0}C_{124}^k3^{\frac{k}{2}}2^{93-\frac{3k}{4}}\)

Hạng tử là nguyên khi và chỉ khi:

\(\left\{{}\begin{matrix}\frac{k}{2}\in Z\\\frac{3k}{4}\in Z\\0\le k\le124\end{matrix}\right.\) \(\Rightarrow k=4n\) với \(n\in N\)

\(\Rightarrow0\le4n\le124\Rightarrow0\le n\le31\)

Có 32 hạng tử nguyên

NV
6 tháng 11 2019

\(\left(x^{-4}+x^{\frac{5}{2}}\right)^{12}\) có SHTQ: \(C_{12}^kx^{-4k}.x^{\frac{5}{2}\left(12-k\right)}=C^k_{12}x^{30-\frac{13}{2}k}\)

Số hạng chứa \(x^8\Rightarrow30-\frac{13}{2}k=8\Rightarrow\) ko có k nguyên thỏa mãn

Vậy trong khai triển trên ko có số hạng chứa \(x^8\)

b/ \(\left(1-x^2+x^4\right)^{16}\)

\(\left\{{}\begin{matrix}k_0+k_2+k_4=16\\2k_2+4k_4=16\end{matrix}\right.\)

\(\Rightarrow\left(k_0;k_2;k_4\right)=\left(8;8;0\right);\left(9;6;1\right);\left(10;4;2\right);\left(11;2;3\right);\left(12;0;4\right)\)

Hệ số của số hạng chứa \(x^{16}\):

\(\frac{16!}{8!.8!}+\frac{16!}{9!.6!}+\frac{16!}{10!.4!.2!}+\frac{16!}{11!.2!.3!}+\frac{16!}{12!.4!}=...\)

c/ SHTQ của khai triển \(\left(1-2x\right)^5\)\(C_5^k\left(-2\right)^kx^k\)

Số hạng chứa \(x^4\) có hệ số: \(C_5^4.\left(-2\right)^4\)

SHTQ của khai triển \(\left(1+3x\right)^{10}\) là: \(C_{10}^k3^kx^k\)

Số hạng chứa \(x^3\) có hệ số \(C_{10}^33^3\)

\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) là: \(C_5^4\left(-2\right)^4+C_{10}^3.3^3\)

29 tháng 11 2019

em không hiểu phần b ạ

NV
3 tháng 11 2019

\(\left(3^{\frac{1}{2}}+2^{\frac{1}{3}}\right)^9=\sum\limits^9_{k=0}C_9^k\left(3^{\frac{1}{2}}\right)^k\left(2^{\frac{1}{3}}\right)^{9-k}=\sum\limits^9_{k=0}C_9^k3^{\frac{k}{2}}.2^{\frac{9-k}{3}}\)

Số hạng là nguyên khi:

\(\left\{{}\begin{matrix}\frac{k}{2}\in Z\\\frac{9-k}{3}\in Z\\0\le k\le9\end{matrix}\right.\) \(\Rightarrow k=\left\{0;6\right\}\)

NV
5 tháng 11 2019

\(\left(x^{-\frac{2}{3}}+x^{\frac{3}{4}}\right)^{17}=\sum\limits^{17}_{k=0}C_{17}^k\left(x^{-\frac{2}{3}}\right)^k\left(x^{\frac{3}{4}}\right)^{17-k}=\sum\limits^{17}_{k=0}C_{17}^kx^{\frac{51}{4}-\frac{17}{12}k}\)

Số hạng thứ 13 \(\Rightarrow k=12\) là: \(C_{17}^{12}x^{-\frac{17}{4}}\)

b/ Xét khai triển:

\(\left(3-x\right)^n=C_n^03^n+C_n^13^{n-1}\left(-x\right)^1+C_n^23^{n-2}\left(-x\right)^2+...+C_n^n\left(-x\right)^n\)

Cho \(x=1\) ta được:

\(2^n=3^nC_n^0-3^{n-1}C_n^1+3^{n-2}C_n^2+...+\left(-1\right)^nC_n^n\)

À, đến đây mới thấy đề thiếu, biết rằng cái kia làm sao hả bạn?

6 tháng 11 2019

dòng phía dưới đó @Nguyễn Việt Lâm

23 tháng 11 2016

20x

3 tháng 8 2018

ta có : \(\left(2nx+\dfrac{1}{2nx^2}\right)^{3n}=\sum\limits^{3n}_{k=0}C^k_{3n}\left(2nx\right)^{3n-k}\left(\dfrac{1}{2nx^2}\right)^k\)

\(=\sum\limits^{3n}_{k=0}C^k_{3n}2^{3n-2k}\left(n\right)^{3n-2k}\left(x\right)^{3n-3k}\)

\(\Rightarrow\) tổng hệ số bằng : \(C^0_{3n}+C_{3n}^1+C^2_{3n}+...+C^{3n}_{3n}=64\)

\(\Leftrightarrow\left(1+1\right)^{3n}=64\Leftrightarrow2^{3n}=2^6\Rightarrow n=2\)

để có số hạng không chữa \(x\) không khai triển thì \(3n-3k=0\Leftrightarrow n=k\)

\(\Rightarrow\) hệ số của số hạng không chữa \(x\)\(C^2_6.2^2.2^2=240\)

vậy ...........................................................................................................................

13 tháng 11 2019

Mysterious Person bn ơi cho mik hỏi chút nha , tại sao ở trên có

23n-2kn3n-2k mà ở dưới phần tổng hệ số í lại ko có ....Mong bn giúp mik ...

20 tháng 12 2016

28

20 tháng 12 2016

bn giải rõ ra đi