Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)
áp dụng bđ cosy
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)
=> đpcm
6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
hay với mọi x thuộc R đều là nghiệm của bpt
7.áp dụng bđt cosy
\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)
1.b
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-d\right)^2+\left(d-a\right)^2\ge0\) tong 4 so khong am luon dung
2 . ta có
\(\left(x-y\right)^2\ge0\)
<=> x2-2xy+y2 ≥ 0
<=> x2+4xy-2xy+y2 ≥ 4xy
<=> x2+2xy+y2 ≥ 4xy
<=> (x+y)2 ≥ 4xy
CMTT
(y+z)2 ≥ 4yz
(z+x)2 ≥ 4zx
nhân các vế của bđt ta có
[(x+y)(y+z)(z+x)]2 ≥ 64x2y2z2
<=> (x+y)(y+z)(z+x) ≥ 8xyz
5) a) Ta có: \(a< b+c\)
\(\Rightarrow a^2< ab+ac\)
Tương tự: \(b^2< ba+bc\)
\(c^2< ca+cb\)
Cộng từng vế các BĐT vừa chứng minh, ta được đpcm
b) Ta có: \(\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\)
\(\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\)
\(\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^2\le a^2\)
Nhân từng vế các BĐT trên, ta được
\(\left[\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\right]^2\le\left(abc\right)^2\)
Các biểu thức trong ngoặc vuông đều dương nên ta suy ra đpcm
Bài 5:
a)
Ta có \(a^2+b^2+c^2<2(ab+bc+ac)\)
\(\Leftrightarrow a(b+c-a)+b(a+c-b)+c(a+b-c)>0\)
Điều này hiển nhiên đúng vì $a,b,c$ là độ dài ba cạnh tam giác nên
\(b+c-a,a+b-c,c+a-b>0\)
b) Áp dụng BĐT Am-Gm:
\((a+b-c)(b+c-a)\leq \left ( \frac{a+b-c+b+c-a}{2} \right )^2=b^2\)
\((a+b-c)(c+a-b)\leq \left (\frac{a+b-c+c+a-b}{2}\right)^2=a^2\)
\((b+c-a)(a+c-b)\leq \left ( \frac{b+c-a+a+c-b}{2} \right )^2=c^2\)
Nhân theo vế :
\(\Rightarrow [(a+b-c)(b+c-a)(c+a-b)]^2\leq a^2b^2c^2\)
\(\Rightarrow (a+b-c)(b+c-a)(c+a-b)\leq abc\)
Do đó ta có đpcm
c)
\(a^3+b^3+c^3+2abc< a^2(b+c)+b^2(c+a)+c^2(a+b)\)
\(\Leftrightarrow a(ab+ac-a^2-bc)+b(ab+bc-b^2-ac)+c(ca+cb-c^2)>0\)
\(\Leftrightarrow a(a-c)(b-a)+b(b-c)(a-b)+c^2(a+b-c)>0\)
\(\Leftrightarrow (a-b)(b-a)(b+a-c)+c^2(b+a-c)>0\)
\(\Leftrightarrow (b+a-c)[c^2-(a-b)^2]>0\)
Điều này hiển nhiên đúng vì $a,b,c$ là độ dài ba cạnh tam giác thì \(b+a>c, c>|a-b|\)
Do đó ta có đpcm.
2) Có: \(a+b+c=0\)
\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ac\right)^2\)
\(\Leftrightarrow VT=4\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2-2abc\left(a+b+c\right)\right]\)
\(\Leftrightarrow VT=4\left(ab\right)^2+4\left(ac\right)^2+4\left(bc\right)^2\)
Có: \(a+b+c=0\Rightarrow a+b=-c\Leftrightarrow\left(a+b\right)^2=c^2\Leftrightarrow2ab=c^2-a^2-b^2\)
Tương tự:...
\(VT=\text{Σ}_{cyc}\left(c^2-a^2-b^2\right)^2=2\left(a^4+b^4+c^4\right)=VP\)
* Đặt tên các biểu thức theo thứ tự là A,B,C,D,E.
Câu a)
Theo hằng đẳng thức đáng nhớ ta có:
\(a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)\)
\(=(a+b+c)^3-3[ab(a+b)+bc(b+c)+ca(c+a)+2abc]\)
\(=(a+b+c)^3-3[ab(a+b+c)+bc(b+c+a)+ca(c+a+b)-abc]\)
\(=(a+b+c)^3-3[(a+b+c)(ab+bc+ac)]+3abc\)
\(\Rightarrow a^3+b^3+c^3-3abc=(a+b+c)^3-3(ab+bc+ac)(a+b+c)\)
\(=(a+b+c)[(a+b+c)^2-3(ab+bc+ac)]\)
\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\) (*)
Do đó:
\(A=\frac{(a+b+c)(a^2+b^2+c^2-ab-bc-ac)}{a^2+b^2+c^2-ab-bc-ac}=a+b+c\)
Câu b)
\(x^3-y^3+z^3+3xyz=x^3+(-y)^3+z^3-3x(-y)z\)
Sử dụng kết quả (*) của câu a. Với \(a=x, b=-y, c=z\)
\(\Rightarrow x^3+(-y)^3+z^3-3x(-y)z=(x-y+z)(x^2+y^2+z^2+xy+yz-xz)\)
Mặt khác xét mẫu số:
\((x+y)^2+(y+z)^2+(x-z)^2=x^2+2xy+y^2+y^2+2yz+z^2+x^2-2xz+z^2\)
\(=2(x^2+y^2+z^2+xy+yz-xz)\)
Do đó: \(B=\frac{(x-y+z)(x^2+y^2+z^2+xy+yz-xz)}{2(x^2+y^2+z^2+xy+yz-xz)}=\frac{x-y+z}{2}\)
Câu c) Sử dụng kết quả (*) của phần a:
\(x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)
Và mẫu số:
\((x-y)^2+(y-z)^2+(z-x)^2=2(x^2+y^2+z^2-xy-yz-xz)\)
Do đó: \(C=\frac{(x+y+z)(x^2+y^2+z^2-xy-yz-xz)}{2(x^2+y^2+z^2-xy-yz-xz)}=\frac{x+y+z}{2}\)
Câu d)
Xét tử số:
\(a^2(b-c)+b^2(c-a)+c^2(a-b)\)
\(=a^2(b-c)-b^2[(b-c)+(a-b)]+c^2(a-b)\)
\(=(b-c)(a^2-b^2)-(b^2-c^2)(a-b)\)
\(=(b-c)(a-b)(a+b)-(b-c)(b+c)(a-b)\)
\(=(a-b)(b-c)[a+b-(b+c)]=(a-b)(b-c)(a-c)\) (1)
Xét mẫu số:
\(a^4(b^2-c^2)+b^4(c^2-a^2)+c^4(a^2-b^2)\)
\(=a^4(b^2-c^2)-b^4[(b^2-c^2)+(a^2-b^2)]+c^4(a^2-b^2)\)
\(=(a^4-b^4)(b^2-c^2)-(b^4-c^4)(a^2-b^2)\)
\(=(a^2-b^2)(a^2+b^2)(b^2-c^2)-(b^2-c^2)(b^2+c^2)(a^2-b^2)\)
\(=(a^2-b^2)(b^2-c^2)[a^2+b^2-(b^2+c^2)]\)
\(=(a^2-b^2)(b^2-c^2)(a^2-c^2)\)
\(=(a-b)(b-c)(a-c)(a+b)(b+c)(c+a)\)(2)
Từ (1)(2) suy ra \(D=\frac{1}{(a+b)(b+c)(c+a)}\)
Câu e)
Theo phần d ta có:
\(TS=(a-b)(b-c)(a-c)\)
\(MS=ab^2-ac^2-b^3+bc^2\)
\(=b^2(a-b)-c^2(a-b)=(a-b)(b^2-c^2)=(a-b)(b-c)(b+c)\)
Do đó: \(E=\frac{(a-b)(b-c)(a-c)}{(a-b)(b-c)(b+c)}=\frac{a-c}{b+c}\)
1.
Ta có x+y+z=0
=>x+y=-z; x+z=-y; y+z=-x.
\(\left(\frac{x}{y}+1\right)\left(\frac{y}{z}+1\right)\left(\frac{z}{x}+1\right)\)\(=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{z+x}{x}\)\(=-\frac{xyz}{xyz}=-1\)
2) a+b+c=0 <=> (a+b+c)^2=0
<=> a^2+b^2+c^2+2(ab+bc+ca)=0
VT >= ab+bc+ca+2(ab+bc+ca)
=> 0 >= 3(ab+bc+ca)
<=> 0 >= (ab+bc+ca)
Dấu "=" xảy ra khi a=b=c=0
3/ b/
TH 1: Trong 3 số \(\left(a+b-c\right);\left(b+c-a\right);\left(c+a-b\right)\)có 1 số âm hoặc 3 số đều âm thì BĐT đúng. (Thật ra không xảy ra được trường hợp cả 3 số đều âm đâu cứ ghi cho vui thôi).
TH 2: Trong 3 số \(\left(a+b-c\right);\left(b+c-a\right);\left(c+a-b\right)\)có 2 số âm
Giả sử 2 số âm đó là \(\left(a+b-c\right);\left(b+c-a\right)\)
\(\Rightarrow a+b-c+b+c-a=2b< 0\)trái đề bài. Nên không thể cùng lúc 2 số đều âm.
TH 3: Cả 3 số \(\left(a+b-c\right);\left(b+c-a\right);\left(c+a-b\right)\)đều dương
Ta có:
\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\dfrac{a+b-c+b+c-a}{2}=b\left(1\right)\)
Tương tự ta có:
\(\left\{{}\begin{matrix}\sqrt{\left(a+b-c\right)\left(c+a-b\right)}\le a\left(2\right)\\\sqrt{\left(b+c-a\right)\left(c+a-b\right)}\le c\left(3\right)\end{matrix}\right.\)
Nhân (1), (2), (3) vế theo vế ta được
\(\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\le abc\)
Vậy ta có ĐPCM
3/ c/ Sửa đề thành a,b,c là 3 cạnh của tam giác nhé.
Ta cần chứng minh
\(a^3+b^3+c^3+2abc< a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\)
\(\Leftrightarrow\left[ab^2+ac^2-a^3\right]+\left[ba^2+bc^2-b^3\right]+\left[ca^2+cb^2-c^3\right]>2abc\)
\(\Leftrightarrow\dfrac{b^2+c^2-a^2}{2bc}+\dfrac{c^2+a^2-b^2}{2ca}+\dfrac{a^2+b^2-c^2}{2ab}-1>0\)
\(\Leftrightarrow\dfrac{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}{2abc}>0\) (đúng)
2 câu còn lại thì câu 1 sai rõ quá rồi bỏ qua. Còn câu 3a thì để t xem thử có sửa được đề không t làm nốt sau nhé. Giờ bận rồi.
Em(mình) thử nhé, ko chắc đâu
3/ Ta có \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\)
\(=\left[ab\left(a+b\right)+abc\right]+\left[bc\left(b+c\right)+abc\right]+\left[ca\left(c+a\right)+ca\right]-abc\)
\(=\left(a+b+c\right)ab+\left(a+b+c\right)bc+\left(a+b+c\right)ca-abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)= -abc
Suy ra \(P=\frac{-abc}{abc}=-1\)
Vậy..
Bài 1:
a) \(\)Ta có: x2 + y2 + z2 + 3 - 2(x + y + z) = (x2 - 2x + 1) + (y2 - 2y + 1) + (z2 - 2z + 1) = (x - 1)2 + (y - 1)2 + (z - 1)2 ≥ 0
=> x2 + y2 + z2 + 3 ≥ 2(x + y + z)
b) Áp dụng liên tiếp bất đẳng thức Cô-si:
\(\left(a^4+b^4\right)+\left(c^4+d^4\right)\ge2\sqrt{a^4b^4}+2\sqrt{c^4d^4}=2\left(a^2b^2+c^2d^2\right)\ge2.2.\sqrt{a^2b^2c^2d^2}=4\left|abcd\right|\ge4abcd\)
Dấu "=" xảy ra <=> a = b = c = d
Bài 2:
Ta sẽ chứng minh ab + bc + ca ≤ \(\dfrac{1}{3}\)(a + b + c)2 = 0
<=> 3ab + 3bc + 3ca ≤ (a + b + c)2
<=> 3ab + 3bc + 3ca ≤ a2 + b2 + c2 + 2ab + 2bc + 2ca
<=> ab + bc + ca ≤ a2 + b2 + c2
Thật vậy:
(a - b)2 + (b - c)2 + (c - a)2 ≥ 0
<=> a2 - 2ab + b2 + b2 - 2bc + c2 + c2 - 2ca + a2 ≥ 0
<=> 2a2 + 2b2 + 2c2 ≥ 2ab + 2bc + 2ca
<=> a2 + b2 + c2 ≥ ab + bc + ca
Dấu "=" xảy ra <=> a = b = c = 0
@Nguyễn Thị Ngọc Thơ tưởng bữa trước bảo là tên cặn bã cơ mà =.='', giờ sv là sao -.-
Cơ mà bỏ cái thói like dạo rồi à ?