K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

Bài 1:

\(N=\left(x^n+1\right)\left(x^n-2\right)-x^{n-3}\left(x^{n+3}-x^3\right)+2017\)

\(=x^{2n}-2x^n+x^n-2-x^{2n}+x^n+2017\)

\(=2017\)

\(\Rightarrowđpcm\)

Bài 2:

\(A=-2\left(n+1\right)+n\left(2n-3\right)\)

\(=-2n^2-2n+2n^2-3n\)

\(=-5n⋮5\forall n\in Z\)

\(\Rightarrowđpcm\)

Bài 3:

\(A=x^8-2017x^7+2017x^6-2017x^5+...-2017x+2017\)

\(=x^8-2016x^7-x^7+2016x^6+x^6-2016x^5-x^5+2016x^4+...-2016x-x+2016+1\)

\(=x^7\left(x-2016\right)-x^6\left(x-2016\right)+x^5\left(x-2016\right)-x^4\left(x-2016\right)+...-\left(x-2016\right)+1\)

\(=\left(x^7-x^6+x^5-x^4+...-1\right)\left(x-2016\right)+1\)

Thay x = 2016

\(\Rightarrow A=1\)

Vậy A = 1 khi x = 2016

4 tháng 9 2018

Kẻ \(BH\perp CD\)

Mà \(CD\perp AD\left(gt\right)\Rightarrow BH//AD\)

Hình thang ABHD (AB//HD) có BH//AD nên \(\hept{\begin{cases}HD=AB=5\left(cm\right)\\BH=AD\end{cases}}\) (t/c hình thang)

\(HD+HC=DC\Rightarrow5+HC=9\Rightarrow HC=4\left(cm\right)\)

\(\Delta HBC\)vuông cân tại H nên \(HB=HC=4cm\Rightarrow AD=4cm\left(AD=BH\right)\)

Áp dụng định lí Pitago tính được \(BC=\sqrt{32}\left(cm\right)\)

Chu vi hình thang vuông ABCD là: 

          \(AB+BC+CD+AD=5+\sqrt{32}+9+4=18+\sqrt{32}\left(cm\right)\)

Chúc bạn học tốt.

1,a, Rút gon biểu thức: \(B=\frac{x^3-y^3-z^3-3xyz}{\left(x+y\right)^2+\left(y-z\right)^2+\left(x+z\right)^2}\)b, Tìm số dư của phép chia A cho B. Biết:\(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+9\)\(B=\left(x^2+8x+1\right)\)c, Tìm x là số nguyên tố sao cho: \(\left(x^3-2x^2+7x-7\right)chiah\text{ế}t\left(x^2+3\right)\)2, Cho biểu thức: \(A=\left(\frac{1-x^3}{1-x}+x\right)\left(\frac{1+x^3}{1+x}-x\right)\)a, Rút gọn A ( Phải tìm...
Đọc tiếp

1,

a, Rút gon biểu thức: \(B=\frac{x^3-y^3-z^3-3xyz}{\left(x+y\right)^2+\left(y-z\right)^2+\left(x+z\right)^2}\)

b, Tìm số dư của phép chia A cho B. Biết:

\(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+9\)

\(B=\left(x^2+8x+1\right)\)

c, Tìm x là số nguyên tố sao cho: \(\left(x^3-2x^2+7x-7\right)chiah\text{ế}t\left(x^2+3\right)\)

2, Cho biểu thức: \(A=\left(\frac{1-x^3}{1-x}+x\right)\left(\frac{1+x^3}{1+x}-x\right)\)

a, Rút gọn A ( Phải tìm TXĐ)

b, Tìm x để A = 64

3,

a, Rút gọn biểu thức: \(M=75\left(4^{2016}+4^{2015}+........+4+1\right)+25\)

b, Tìm x biết: \(x^4-30x^2+31x-30=0\)

c, Tìm x, y là các số nguyên tố để \(x^2+45=y^2\)

4, Cho tam giác ABC vuông tại A (AC > AB) đường cao AH. Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC ại D cắt AC tại E

a, CMR: AE = AB    (gợi ý: Từ E kẻ EF vuông góc với AH ( F thuộc AH)

b, Gọi M là trung điểm của BE. Tính \(\widehat{AHM}\)

5, 

a, CMR: với mọi số nguyên a thì (a^3 - a) chia hết cho 6

b, Cho \(A=a_{1^3+}a_{2^3}+........+a_{n^3}\)

          \(B=\left(a_1+a_2+.......+a_n\right)^3\)

CMR: A chia hết cho 6 thì B chia hết cho 6

0

Bài 2: 

a: \(\Leftrightarrow x^2+3x-x^2-11=0\)

=>3x-11=0

=>x=11/3

b: \(\Leftrightarrow x^3+8-x^3-2x=0\)

=>8-2x=0

=>x=4

Bài 3:

a: Sửa đề: \(\left(x+y\right)^2-\left(x-y\right)^2\)

\(=\left(x+y+x-y\right)\left(x+y-x+y\right)\)

\(=2x\cdot2y=4xy\)

b: \(=\left(7n-2-2n+7\right)\left(7n-2+2n-7\right)\)

\(=\left(9n-9\right)\left(5n+5\right)=9\left(n-1\right)\left(5n+5\right)⋮9\)

16 tháng 1 2020

A B C D 2cm E 4cm 45

Kẻ \(BE\perp CD\)

Xét \(\Delta BEC\)vuông tại E có :

\(\widehat{BEC}=90^o\) ( theo cách vẽ )

Mà \(\widehat{C}=45^o\)(gt)

\(\Rightarrow\Delta BEC\)vuông cân tại E

\(\Rightarrow BE=EC\)( tính chất tam giác vuông cân )

Hay \(BE\perp DC\)(1)

Vì \(\widehat{D}=90^o\left(gt\right)\)

\(\Rightarrow AD\perp DC\left(2\right)\)

Từ (1) và (2) \(\Rightarrow AD//BE\)( từ vuông góc đến song song )

Hình thang \(ABED\) có \(AD//BE\left(cmt\right)\)

\(\Rightarrow AB=DE\)( theo nhận xét của hình thang )
Mà \(AB=2cm\left(gt\right)\)

 \(\Rightarrow AB=DE=2cm\)

Ta có \(EC=CD-BE\)

\(\Rightarrow EC=4-2\)

\(\Rightarrow EC=2cm\)

Mà BE = EC (cmt)

\(\Rightarrow BE=2cm\)

\(\Rightarrow S_{ABCD}=\frac{1}{2}\left(AB+CD\right).BE=\frac{1}{2}.\left(2+4\right).2=\frac{1}{2}.6.2=6\left(cm^2\right)\)

Vậy \(S_{ABCD}=6\left(cm^2\right)\)

Chúc bạn học tốt !!!

28 tháng 7 2018

undefined

Từ B kẻ \(BE\perp DC;E\in DC\)

Dễ thấy ABED là HCN, có: \(BE=AD=2cm\)

\(\Delta BEC\) vuông tại E có \(BE=\dfrac{BC}{2}\) nên \(\Delta BEC\) bằng nửa tam giác đều Do đó: \(\widehat{C}=30^0;\widehat{CBE}=60^0\) Khi đó ta có: \(\widehat{ABC}=90^0+60^0=150^0\) Vậy hình thang \(ABCD\)\(\widehat{B}=150^0;\widehat{C}=30^0\)
31 tháng 7 2020

A B C D H

Vì AB // CD nên \(\widehat{B}+\widehat{C}=180^o\)

Mà \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\widehat{B}=\widehat{C}=\frac{180^o}{2}=90^o\)

\(\Rightarrow\)Tứ giác ABCH có 3 góc vuông là hình chữ nhật

Ta có : \(DH=DC-HC\)

                    \(=DC-AB\)  (Vì AB = HC)

                     \(=4-3\)

                      \(=1\left(cm\right)\)

Lại có : \(\hept{\begin{cases}\widehat{A}=3\widehat{D}\\\widehat{A}+\widehat{D}=180^o\left(slt\right)\end{cases}\Rightarrow}\hept{\begin{cases}\widehat{A}=135^o\\\widehat{D}=45^o\end{cases}}\)

\(\Rightarrow\)△AHD vuông tại H có ^ADH = 45o

\(\Rightarrow\)△AHD vuông cân tại H

\(\Rightarrow\)AH = DH

\(\Rightarrow\)AH = 1 (cm)

Vậy \(S_{ABCD}=\frac{\left(AB+CD\right)\cdot AH}{2}=\frac{\left(4+3\right)\cdot1}{2}=3,5\left(cm^2\right)\)

31 tháng 7 2020

Xét hình thang ABCD có \(AB//CD\)(gt) có:

\(\widehat{A}+\widehat{D}=180^0\)(trong cùng phía)

Mà \(\widehat{A}=3\widehat{D}\left(gt\right)\)

\(\Rightarrow3\widehat{D}+\widehat{D}=180^0\)

\(\Leftrightarrow4\widehat{D}=180^0\)

\(\Leftrightarrow\widehat{D}=45^0\)

\(\Rightarrow\widehat{A}=3.45^0=135^0\)

Ta có:\(AB//CD\left(gt\right)\)\(\Rightarrow\widehat{B}+\widehat{C}=180^0\)

Mà \(\widehat{B}=\widehat{C}\left(gt\right)\)\(\Rightarrow\widehat{B}+\widehat{B}=180^0\)

                                 \(\Leftrightarrow2\widehat{B}=180^0\)

                                 \(\Leftrightarrow\widehat{B}=90^0\Rightarrow\widehat{C}=90^0\)

Xét tứ giác ABCH có \(\widehat{B}=\widehat{C}=\widehat{H}=90^0\left(cmt\right)\)

\(\Rightarrow\)Tứ giác ABCH là hình chữ nhật (DHNB)

\(\Rightarrow AB=CH=3cm\)(t/c)  \(\Rightarrow DH=CD-CH=4-3=1\left(cm\right)\)

Xét \(\Delta AHD\)có \(\widehat{H}=90^0,\widehat{D}=45^0\left(cmt\right)\)

\(\Rightarrow\Delta AHD\)vuông cân tại A (DHNB) \(\Rightarrow AH=DH=1cm\)(t/c)

Diện tích hình thang ABCD có:

\(S_{ABCD}=\frac{\left(AB+CD\right)\times AH}{2}=\frac{\left(3+4\right)\times1}{2}=3,5\left(cm^2\right)\)

Đáp số \(3,5cm^2\)

Học tốt 

20 tháng 6 2017
Kẻ đường cao BH (H thuộc CD).
Khi đó Tứ giác ABHD là hình vuông (Tứ giác có 3 góc vuông và hai cạnh kề bằng nhau).
Suy ra BH = AB = 2
Trong tam giác vuông BHC có BH =1/2 BC nên tam giác BHC là nửa tam giác đều.
Suy ra \(\widehat{HBC}=60^0va\widehat{C}=30^o\)
Vậy các góc của hình thang là: \(\widehat{A}=\widehat{D}=90^o;\widehat{B}=150^o;\widehat{C}=30^o\)
29 tháng 6 2017

Hình thang