Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự kẻ hình nha
a) xét tam giác BMD và tam giác CMA có
AM=MD(gt)
BM=CM(gt)
AMC=BMD( đối đỉnh)
=> tam giác BMD= tam giác CMA(cgc)
=> BDM=MAC( hai góc tương ứng)
mà BDM so le trong với MAC=> AC//BD, BA vuông góc với AC=> BA vuông góc với BD=> ABD=90 độ
b) từ tam giác BMD= tam giác CMA=> BD=AC( hai cạnh tương ứng)
xét tam giác ABC và tam giác BAD có
BD=AC(cmt)
AB chung
BAC=ABD(=90 độ)
=> tam giác ABC= tam giác BAD(cgc)
c) từ tam giác ABC= tam giác BAD => AD=BC( hai cạnh tương ứng)
mà AM=MD=> M là trung điểm của AD
và M là trung điểm của BC=> AM=MD=BM=CM
=> 2AM=BM+CM
=> 2AM=BC
=> AM=1/2BC
GT: Δ ABC vuông tại A
BM = CM
D ϵ tia đối của tia MA sao cgo MA = MD
KL: AD = BC
\(AM=\frac{1}{2}BC\)
Ta có hình vẽ:
A B C M D
Nối đoạn BD
Xét Δ BMD và Δ CMA có:
BM = CM (gt)
BMD = CMA (đối đỉnh)
MD = MA (gt)
Do đó, Δ BMD = Δ CMA (c.g.c)
=> BD = AC (2 cạnh tương ứng) và BDM = MAC (2 góc tương ứng)
Mà BDM và MAC là 2 góc so le trong nên BD // AC
=> BAC + ABD = 180o (trong cùng phía)
=> 90o + ABD = 180o
=> ABD = 180o - 90o = 90o = BAC
Xét Δ ABD và Δ BAC có:
BD = AC (cmt)
ABD = BAC = 90o
AB là cạnh chung
Do đó, Δ ABD = Δ BAC (c.g.c)
=> AD = BC (2 cạnh tương ứng) (1)
Mà AM = MD = \(\frac{1}{2}AD\) (2)
Từ (1) và (2) => \(AM=\frac{1}{2}BC\left(đpcm\right)\)
Bn tự vẽ hình nhé!
a) Xét ΔAMC và ΔDMB có:
MB = MC ( M là trung điểm của BC )
∠AMC = ∠DMB ( 2 góc đối đỉnh )
MA = MD ( gt )
=> ΔAMC = ΔDMB ( c.g.c )
b) Vì ΔAMC = ΔDMB ( cmt )
=> ∠DAC = ∠ADB ( 2 góc tương ứng )
=> AC // BD ( 2 góc so le trong bằng nhau )
Mà AC ⊥ AB ( ∠ BAC = 900 )
=> AB ⊥ BD ( định lý từ vuông góc đến song song )
=> ∠ ABD = 900
c) Xét Δ ABC và ΔBAD có :
AB chung
∠BAC = ∠ ABD ( = 900)
AC = BC ( ΔAMC = ΔDMB ( cmt )
=> Δ ABC = ΔBAD ( c.g.c)
=> BC = AD ( 2 cạnh t/ứng )
Ta có : MA = MD ( gt )
Mà M nằm giữa 2 điểm A và D
=> M là t/đ của AD
=> AM = 1/2AD
Mà AD = BC ( cmt )
=> AM= 1/2 BC ( đcm )
Ta có hình vẽ sau:
A B C D M 1 2
GT: ΔABC ; \(\widehat{A}\) = 90o
MB = MC ; MA = MD
KL: a) ΔAMB = DMC
a) Xét ΔAMB và ΔDMC có:
MA = MD (gt)
\(\widehat{M_1}\) = \(\widehat{M_2}\) ( 2 góc đối đỉnh)
MB = MC (gt)
\(\Rightarrow\) ΔAMB = ΔDMC ( cạnh - góc-cạnh)
mình chỉ làm bai 2 thoi
ket qua la 2010/2011
nhớ k nha minh k lai