Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E D A C B F I
a) Xét \(\Delta\)BAE và \(\Delta\)DAC có: ^BAE = ^DAC ( đối đỉnh ) ; AD = AB ( gt ) ; AE = AC ( gt )
=> \(\Delta\)BAE = \(\Delta\)DAC ( c.g.c)
=> BE = DC
b) Tương tự câu a dễ dàng cm đc: \(\Delta\)ADE = \(\Delta\)ABC => ^ADE = ^ABC => DE//BC
=> ^EDI = ^DIC mà ^EDI = ^BDI ( DI là phân giác ^BDE )
=> ^DIC = ^BDI hay ^DIB = ^IDB => \(\Delta\)BDI cân tại B.
c) Ta có: ^DBC là góc ngoài tại đỉnh B của \(\Delta\)BDI => ^DBC = ^BDI + ^BID = 2. ^BID = 2. ^CIF( theo b) (1)
Có: CF là phân giác ^BCA =>^BCF = ^ACF => ^BCA = ^BCF + ^ACF = 2. ^BCF = 2. ^ICF (2)
Lại có: ^CFD là góc ngoài của \(\Delta\)FCI => ^CFD = ^CIF + ^ICF (3)
Từ (1) ; (2) ; (3) => 2 .^CFD = 2 ^CIF + 2. ^ICF = ^DBC + ^BCA = ^DBC + ^CED ( ^CED = ^BCA vì ED //BC )
a. Theo định lí Pitago:
Ta có: AB2 + AC2 = BC2
42 + AC2 = 52
16 + AC2 = 25
AC2 = 25 - 16
AC2 = 9
AC2 = 33
=> AC = 3 (cm)
a, xét tam giác ABE và tam giác DBE có
AB=BD(gt)
BE chung
góc ABE= góc DBE(gt)
Vậy tam giác ABE= tam giác DBE(c.g.c)
suy ra AE=DE(đpcm)
HOK TỐT HNES
Sơn Tùng MTP,Sơn Tường MTP,Sơn Dầu MTP,Sơn Đoòng MTP
Sơn Tùng MTP,Sơn Tường MTP,Sơn Dầu MTP,Sơn Đoòng MTP