Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,n^3+6n^2+8n\)
\(=n\left(n^2+6n+8\right)\)
\(=n\left(n^2+4n+2n+8\right)\)
\(=n\left[\left(n^2+4n\right)+\left(2n+8\right)\right]\)
\(=n\left[n\left(n+4\right)+2\left(n+4\right)\right]\)
\(=n\left(n+2\right)\left(n+4\right)\)
Vì n chẵn ,đây là tích của ba số chẵn liên tiếp => chia hết cho 48
b, tương tự a
1/
$A=n^3+3n^2-n-3=n^2(n+3)-(n+3)=(n^2-1)(n+3)$
$=(n-1)(n+1)(n+3)$
Do $n$ lẻ nên đặt $n=2k+1$ với $k$ tự nhiên. Khi đó:
$A=(2k+1-1)(2k+1+1)(2k+1+3)=2k(2k+2)(2k+4)$
$=8k(k+1)(k+2)$
Vì $k,k+1, k+2$ là 3 số tự nhiên liên tiếp nên trong đó có ít nhất 1 số chẵn, 1 số chia hết cho 3.
$\Rightarrow k(k+1)(k+2)\vdots 2, k(k+1)(k+2)\vdots 3$
$\Rightarrow k(k+1)(k+2)\vdots 6$ (do $(2,3)=1$)
$\Rightarrow A\vdots (8.6)$ hay $A\vdots 48$.
2/
$B=n^{12}-n^8-n^4+1=(n^{12}-n^8)-(n^4-1)$
$=n^8(n^4-1)-(n^4-1)=(n^8-1)(n^4-1)$
$=(n^4-1)(n^4+1)(n^4-1)$
Đặt $n=2k+1$ với $k$ tự nhiên. Khi đó:
$(n^4-1)(n^4-1)=[(n-1)(n+1)(n^2+1)]^2$
$=[2k(2k+2)(4k^2+4k+2)]^2=[8k(k+1)(2k^2+2k+1)]^2$
Vì $k,k+1$ là 2 số tự nhiên liên tiếp nên $k(k+1)\vdots 2$
$\Rightarrow 8k(k+1)\vdots 16$
$\Rightarrow (n^4-1)(n^4-1)=[8k(k+1)(2k^2+2k+1)]^2\vdots 16^2=256$
Mà $n^4+1\vdots 2$ do $n$ lẻ.
$\Rightarrow (n^4-1)(n^4-1)(n^4+1)\vdots (2.256)$
Hay $B\vdots 512$
1) Ta có: \(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a+1\right)\left(a^2+2a\right)=a\left(a+1\right)\left(a+2\right)\)
Với \(a\in Z\)thì \(a\left(a+1\right)\left(a+2\right)\)là tích của 3 số nguyên liên tiếp nên\(⋮6\)
2)Với \(a\in Z\)Ta có:\(a\left(2a-3\right)-2a\left(a+1\right)=a\left(2a-3-2a-2\right)=-5a⋮5\)
3) Ta có:\(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1\)lớn hơn 0 với mọi x
4) Ta có: \(x^2-x+1=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)lớn hơn 0 với mọi x
a, n. (2n -3 ) -2n .(n + 1 ) chia hết cho 5
b, n. ( n + 5 ) - (n -3 ) . ( n + 2 ) chia hết cho 6
a)Đặt \(A=n^3+6n^2+8n\)
\(A=n\left(n^2+6n+8\right)\)
\(A=n\left(n^2+2n+4n+8\right)\)
\(A=n\left[n\left(n+2\right)+4\left(n+2\right)\right]\)
\(A=n\left(n+2\right)\left(n+4\right)⋮\forall n\) chẵn
b)Đặt \(B=n^4-10n^2+9\)
\(B=n^4-n^2-9n^2+9\)
\(B=n^2\left(n^2-1\right)-9\left(n^2-1\right)\)
\(B=\left(n-3\right)\left(n-1\right)\left(n+1\right)\left(n+3\right)⋮384\forall n\) lẻ
Ta có:\(n^4+3n^3-n^2-3n=n^3.\left(n+3\right)-n.\left(n+3\right)=\left(n+3\right).\left(n^3-n\right)=\left(n+3\right).n.\left(n^2-1\right)=n.\left(n-1\right).\left(n+1\right).\left(n+3\right)⋮6\)b)Ta có:\(\left(2n-1\right)^3-2n+1=\left(2n-1\right).\left(\left(2n-1\right)^2-1\right)=\left(2n-1\right).\left(2n-1-1\right).\left(2n-1+1\right)=2n.\left(2n-1\right).\left(2n-2\right)⋮24\)
1: Vì 7 là số nguyên tố nên \(n^7-n⋮7\)
2: \(A=n^3+11n\)
\(=n^3-n+12n\)
\(=n\left(n-1\right)\left(n+1\right)+12n⋮6\)
3: \(=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\)
Bài 3:
\(x^3+7x^2-56x+48=0\)
\(\Leftrightarrow x^3-4x^2+11x^2-44x-12x+48=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2+11x-12\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+12\right)\left(x-1\right)=0\)
hay \(x\in\left\{4;-12;1\right\}\)
1/ \(A=n^4-1=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
Vì \(\left(n,3\right)=1\) nên \(n⋮̸3\) nên n chia 3 dư 1 hoặc dư 2
- Nếu n chia 3 dư 1 thì \(\left(n-1\right)⋮3\Rightarrow A⋮3\)
- Nếu n chia 3 dư 2 thì \(\left(n+1\right)⋮3\Rightarrow A⋮3\)
Như vậy \(A⋮3\)
Lại có n lẻ nên n-1 và n+1 là 2 số chẵn liên tiếp \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\right]⋮8\) (1)
Mặt khác n lẻ \(\Rightarrow\left(n^2+1\right)⋮2\) (2)
Từ (1) và (2) suy ra \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\right]⋮16\)
Hay \(A⋮16\)
Ta có \(A⋮3;A⋮16\), mà (3;16) = 1 nên \(A⋮48\)
2/ \(B=n^4-1=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
- Chứng minh \(B⋮16\) tương tự như ở câu 1
- Ta sẽ đi chứng minh \(B⋮5\)
+ Nếu n chia 5 dư 1 thì \(\left(n-1\right)⋮5\Rightarrow B⋮5\)
+ Nếu n chia 5 dư 4 thì \(\left(n+1\right)⋮5\Rightarrow B⋮5\)
+ Nếu n chia 5 dư 2 hoặc dư 3 thì \(\left(n^2+1\right)⋮5\Rightarrow B⋮5\)
Do đó \(B⋮5\)
Kết hợp với \(B⋮16\) ở trên suy ra \(B⋮80\)
4. \(D=n^8-n^4=n^4\left(n^4-1\right)=n^3\left(n-1\right).n.\left(n+1\right)\left(n^2+1\right)\)
- Dễ thấy n-1, n, n+1 là 3 số nguyên liên tiếp nên \(D⋮3\)
- Chứng minh \(D⋮5\)
+ Nếu \(n⋮5\) thì \(D⋮5\)
+ Nếu n chia 5 dư 1;2;3;4 thì ... (tương tự câu 2)
- Chứng minh \(D⋮16\)
+ Nếu n chẵn thì \(n^4⋮16\Rightarrow D⋮16\)
+ Nếu n lẻ, cmtt câu 1
Ta có (16;3;5) = 1 nên \(D⋮\left(16.3.5\right)=240\)
3. \(C=n^6+n^4-2n^2=n^2\left(n^4+n^2-2\right)\)
\(=n^2\left(n^2-1\right)\left(n^2+2\right)=n^2\left(n-1\right)\left(n+1\right)\left(n^2+2\right)\)
- Chứng minh \(C⋮8\)
+ Nếu n chẵn thì \(n^2⋮4\) và \(\left(n^2+2\right)⋮2\) \(\Rightarrow\left[n^2\left(n+2\right)\right]⋮8\) nên \(C⋮8\)
+ Nếu n lẻ thì n-1 và n+1 là 2 số chẵn liên tiếp \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\right]⋮8\Rightarrow C⋮8\)
- Chứng minh \(C⋮9\)
+ Dễ thấy \(\left[n\left(n-1\right)\left(n+1\right)\right]⋮3\) (1)
+ Ta sẽ chứng minh \(\left[n\left(n^2+2\right)\right]⋮3\)
Nếu \(n⋮3\) thì \(\left[n\left(n^2+2\right)\right]⋮3\)
Nếu n chia 3 dư 1 hoặc 2 thì \(\left[n\left(n^2+2\right)\right]⋮3\)
Vậy \(\left[n\left(n^2+2\right)\right]⋮3,\forall n\in Z\) (2)
Từ (1) và (2) suy ra \(\left[n\left(n-1\right)\left(n+1\right)\right].\left[n\left(n^2+2\right)\right]⋮\left(3.3\right)=9\)
Hay \(C⋮9\)
Ta có \(C⋮8\) và \(C⋮9\), mà (8;9) = 1 nên \(C⋮72\)