Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Thay \(m=-2\) vào pt đề cho ta được pt:
\(x^2-6x-7=0\left(2\right)\)
Lại có: \(a-b+c=1+6-7=0\) nên pt 2 có nghiệm là: \(x_1=1\)và \(x_2=7\)
b. Ta có: \(\Delta'=\left(-3\right)^2-1\left(2m-3\right)=9-2m+3=12-2m\)
Để pt 1 có 2 nghiệm \(x_1;x_2\Leftrightarrow12-2m\ge0\)
\(\Leftrightarrow m\le6\)
Theo hệ thức vi-ét ta được: \(\hept{\begin{cases}x_1+x_2=6\\x_1.x_2=2m-3\end{cases}}\left(3\right)\)
Theo đề bài ta có: \(x^2_1x_2+x_1x_2^2=24\)
\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=24\left(4\right)\)
Thay \(\left(3\right)\)vào \(\left(4\right)\)ta được:
\(6\left(2m-3\right)=24\)
\(\Rightarrow2m-3=4\)
\(\Rightarrow2m=7\)
\(\Rightarrow m=\frac{7}{2}\left(tmđkxđ\right)\)
Vậy .............
b, \(\Delta'=\left(-6\right)^2-1.\left(2m-3\right)=36-2m+3=39-2m\)
Để pt (1) có 2 nghiệm <=> \(\Delta'\ge0\Leftrightarrow39-2m\ge0\Leftrightarrow m\le\frac{39}{2}\)
Theo hệ thức vi-ét ta có: \(x_1+x_2=\frac{-\left(-6\right)}{1}=6;x_1x_2=\frac{2m-3}{1}=2m-3\)
Theo bài ra ta có: \(x_1^2x_2+x_1x_2^2=24\)
\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=24\)
\(\Leftrightarrow\left(2m-3\right).6=24\Leftrightarrow2m-3=24\)
\(\Leftrightarrow2m=27\Leftrightarrow m=\frac{27}{2}\left(TM\right)\)
1 )
a ) ĐK : \(x\ne1\)
\(pt\Leftrightarrow\left(x-2m\right)\left(x+m-3\right)=0\)
\(\Leftrightarrow x^2+mx-3x-2mx-2m^2+6m=0\)
\(\Leftrightarrow x^2-\left(m+3\right)x-\left(2m^2-6m\right)=0\)
\(\Delta=\left(m+3\right)^2+4\left(2m^2-6m\right)\)
\(=m^2+6m+9+8m^2-24m\)
\(=9m^2-18m+9\)
\(=9\left(m-1\right)^2\)
Vì \(9\left(m-1\right)^2\ge0\Rightarrow\Delta\ge0\) . Nên pt có 2 nghiệm với mọi m .
b ) Theo định lý vi - et ta có :
\(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1x_2=-2m^2+6m\end{matrix}\right.\)
Theo đề bài : \(x_1^2+x_2^2-5x_1x_2=14m^2-30m+4\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-7x_1x_2=14m^2-30m+4\)
\(\Leftrightarrow\left(m+3\right)^2-7\left(-2m^2+6m\right)=14m^2-30m+4\)
\(\Leftrightarrow m^2+6m+9+14m^2-42m=14m^2-30m+4\)
\(\Leftrightarrow m^2-6m+5=0\)
\(\Leftrightarrow\left(m-1\right)\left(m-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=5\end{matrix}\right.\)