Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt A=32 + 33+ 34 +……+ 3101
=> A = (32 + 33) + (34+ 35) +...+ (3100 + 3101)
=> A = 3.(3 + 32) + 33.(3 + 32) + ... + 399.(3 + 32)
=> A = 3.12 + 33.12 + ... + 399.12
=> A = 12.(3 + 33 + ... + 399)
=> A chia hết cho 12
A = 32 + 33+ 34 +……+ 3101
= (32 + 33 + 34 + 35 + (36 + 37 + 38 + 39) + ... + (398 +399 +3100 + 3101)
= 32.(1 + 3 + 32 + 33) + 36.(1 + 3 + 32 + 33) + ...+ 398.(1 + 3 + 32 + 33)
= 32.40 + 36.40 + ... + 398.40
= 40.(32+36+...+398)
=> A chia hết cho 10
Ta có: 120=12.10
=>A chia hết cho 120
1/ x = -4 ; y = 5 ; z = 15
2/ vì ab = 1 = -1 . ( -1 ) = 1 . 1 và bằng nhau nên a = b
3/
Bài 1 : Bài giải
Ta có :
\(A=7+7^2+7^3+...+7^8\)
\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)
\(A=7\left(1+7+7^2+7^3\right)+7^4\left(1+7+7^2+7^3\right)\)
\(A=7\cdot400+7^4\cdot400\)
\(A=7\cdot8\cdot50+7^4\cdot8\cdot50\)
\(A=50\left(7\cdot8+7^4\cdot8\right)\text{ }⋮\text{ }50\)
Bài 1 : Bài giải
Ta có :
\(A=7+7^2+7^3+...+7^8\)
\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)
\(A=7\left(1+7+7^2+7^3\right)+7^4\left(1+7+7^2+7^3\right)\)
\(A=7\cdot400+7^4\cdot400\)
\(A=7\cdot8\cdot50+7^4\cdot8\cdot50\)
\(A=50\left(7\cdot8+7^4\cdot8\right)\text{ }⋮\text{ }50\)
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
Vì a,b,x,y,z là các số tự nhiên khác 0.
=>a,b,x,y,z >=1
=>S=a+b+x+y+z >=1+1+1+1+1=5
=>S >=5>2
=>S>2
Ta có: a^2+b^2=x^2+y^2+z^2
=>a^2+b^2+a^2+b^2=a^2+b^2+x^2+y^2+z^2
=> 2.(a^2+b^2)=a^2+b^2+x^2+y^2+z^2
Lại có:
S= a+b+x+y+z
=> S^2=(a+b+x+y+z).(a+b+x+y+z)
=> S^2=a.(a+b+x+y+z)+b.(a+b+x+y+z)+x.(a+b+x+y+z)+y.(a+b+x+y+z)+
z.(a+b+x+y+z)
=> S^2=a^2+a.b+a.x+a.y+a.z+b.a+b^2+b.x+b.y+b.z+x.a+x.b+x^2+x.y+x.z+y.a+
y.b+y.x+y^2+y.z+z.a+z.b+z.x+z.y+z^2
=> S^2=(a^2+b^2+x^2+y^2+z^2)+(a.b+b.a)+(a.x+x.a)+(a.y+y.a)+(a.z+z.a)+
(b.x+x.b)+(b.y+y.b)+(b.z+z.b)+ (x.y+y.x)+(x.z+z.x)+(y.z+z.y)
=> S^2=2.(a^2+b^2)+2.a.b+2.a.x+2.a.y+2.a.z+2.b.x+2.b.y+2.b.z+2.x.y+2.x.z+2.y.z
=> S^2=2.(a^2+b^2+a.b+a.x+a.y+a.z+b.x+b.y+b.z+x.y+x.z+y.z)
=> S^2 chia hết cho 2.
Giả sử S là số nguyên tố mà S>2.
=>S không chia hết cho 2.
=>S^2 không chia hết cho 2.
=>Vô lí.
=>S không phải là số nguyên tố.
Vậy S không phải là số nguyên tố.