K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2021

Áp dụng bđt AM - GM:

\(T=\dfrac{a+b+c}{\sqrt[3]{abc}}+\dfrac{\sqrt[3]{abc}}{a+b+c}=\left(\dfrac{1}{9}\dfrac{a+b+c}{\sqrt[3]{abc}}+\dfrac{\sqrt[3]{abc}}{a+b+c}\right)+\dfrac{8}{9}\dfrac{a+b+c}{\sqrt[3]{abc}}\ge2\sqrt{\dfrac{1}{9}}+\dfrac{8}{9}.3=\dfrac{2}{3}+\dfrac{8}{3}=\dfrac{10}{3}\).

Đẳng thức xảy ra khi a = b = c.

Vậy Min T = \(\dfrac{10}{3}\) khi a = b = c.

AH
Akai Haruma
Giáo viên
22 tháng 1 2018

Từng sau em hạn chế đăng nhiều bài cùng một lúc như thế này nhé. 

Bài 1:

Ta có: \(a+\frac{4}{(a-b)(b+1)^2}=(a-b)+\frac{b+1}{2}+\frac{b+1}{2}+\frac{4}{(a-b)(b+1)^2}-1\)

Áp dụng BĐT AM-GM cho các số không âm ta có:

\((a-b)+\frac{b+1}{2}+\frac{b+1}{2}+\frac{4}{(a-b)(b+1)^2}\geq 4\sqrt[4]{\frac{4(a-b)(b+1)^2}{4(a-b)(b+1)^2}}=4\)

\(\Rightarrow a+\frac{4}{(a-b)(b+1)^2}=(a-b)+\frac{b+1}{2}+\frac{b+1}{2}+\frac{4}{(a-b)(b+1)^2}-1\geq 4-1\)

\(\Leftrightarrow a+\frac{4}{(a-b)(b+1)^2}\geq 3\)

Ta có đpcm.

Dấu bằng xảy ra khi \(a-b=\frac{b+1}{2}=\frac{4}{(a-b)(b+1)^2}\)

\(\Leftrightarrow a=2; b=1\)

AH
Akai Haruma
Giáo viên
22 tháng 1 2018

Bài 2:

Đặt \(\left(\frac{a}{b}, \frac{b}{c}, \frac{c}{a}\right)\mapsto (x,y,z)\Rightarrow xyz=1\)

BĐT cần chứng minh tương đương với:

\(x^2+y^2+z^2\geq \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Leftrightarrow x^2+y^2+z^2\geq \frac{xy+yz+xz}{xyz}=xy+yz+xz(*)\)

Áp dụng BĐT AM-GM:

\(x^2+y^2\geq 2\sqrt{x^2y^2}=2xy\)

\(y^2+z^2\geq 2\sqrt{y^2z^2}=2yz\)

\(z^2+x^2\geq 2\sqrt{z^2x^2}=2zx\)

Cộng theo vế: \(\Rightarrow 2(x^2+y^2+z^2)\geq 2(xy+yz+xz)\)

\(\Leftrightarrow x^2+y^2+z^2\geq xy+yz+xz\)

Do đó (*) đúng, ta có đpcm.

Dấu bằng xảy ra khi \(x=y=z=1\Leftrightarrow a=b=c\)

Bài 3:

Ta có: \(\text{VT}=(\frac{b}{\sqrt{a}}+\frac{c}{\sqrt{b}}+\frac{a}{\sqrt{c}})+(\frac{c}{\sqrt{a}}+\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}})\)

Áp dụng BĐT Bunhiacopxky:

\((\frac{b}{\sqrt{a}}+\frac{c}{\sqrt{b}}+\frac{a}{\sqrt{c}})(\sqrt{a}+\sqrt{b}+\sqrt{c})\geq (\sqrt{b}+\sqrt{c}+\sqrt{a})^2\)

\(\frac{b}{\sqrt{a}}+\frac{c}{\sqrt{b}}+\frac{a}{\sqrt{c}}\geq \sqrt{a}+\sqrt{b}+\sqrt{c}(1)\)

Áp dụng BĐT AM-GM:

\(\frac{c}{\sqrt{a}}+\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}}\geq 3\sqrt[3]{\frac{abc}{\sqrt{abc}}}=3(2)\) do $abc=1$

Từ \((1); (2)\Rightarrow \text{VT}\geq \sqrt{a}+\sqrt{b}+\sqrt{c}+3\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=1\)

AH
Akai Haruma
Giáo viên
29 tháng 9 2017

Lời giải:

Áp dụng hệ quả của BĐT AM-GM:

\(\text{VT}^2=\left[\frac{1}{a(a+1)}+\frac{1}{b(b+1)}+\frac{1}{c(c+1)}\right]^2\geq 3\left(\frac{1}{ab(a+1)(b+1)}+\frac{1}{bc(b+1)(c+1)}+\frac{1}{ca(a+1)(c+1)}\right)\)

\(\Leftrightarrow \text{VT}^2\geq 3.\frac{a^2+b^2+c^2+a+b+c}{abc(a+1)(b+1)(c+1)}\geq 3.\frac{a+b+c+ab+bc+ac}{abc(a+1)(b+1)(c+1)}\)

\(\Leftrightarrow \text{VT}^2\geq \frac{3}{abc}-\frac{3(abc+1)}{abc(a+1)(b+1)(c+1)}\) \((1)\)

Ta sẽ cm \((a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3\). Thật vậy:

Áp dụng BĐT AM-GM:

\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}\)

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}\)

Cộng theo vế: \(\Rightarrow 3\geq \frac{3(\sqrt[3]{abc}+1)}{\sqrt[3]{(a+1)(b+1)(c+1)}}\)

\(\Rightarrow (a+1)(b+1)(c+1)\geq (\sqrt[3]{abc}+1)^3\) (2)

Từ \((1),(2)\Rightarrow \text{VT}^2\geq \frac{3}{abc}-\frac{3(abc+1)}{abc(1+\sqrt[3]{abc})^3}=\frac{9}{\sqrt[3]{a^2b^2c^2}(1+\sqrt[3]{abc})^2}=\text{VP}^2\)

\(\Leftrightarrow \text{VT}\geq \text{VP}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=1\)

28 tháng 9 2017

ap dung bdt holder

NV
3 tháng 3 2019

\(P=3x+2y+\dfrac{6}{x}+\dfrac{8}{y}=\dfrac{3x}{2}+\dfrac{6}{x}+\dfrac{y}{2}+\dfrac{8}{y}+\dfrac{3}{2}\left(x+y\right)\)

\(\Rightarrow P\ge2\sqrt{\dfrac{3x}{2}.\dfrac{6}{x}}+2\sqrt{\dfrac{y}{2}.\dfrac{8}{y}}+\dfrac{3}{2}.6=19\)

\(\Rightarrow P_{min}=19\) khi \(\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

22 tháng 7 2018

Từ giả thiết \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\Rightarrow xy+yz+xz=1\left(x=\dfrac{1}{a};y=\dfrac{1}{b};z=\dfrac{1}{c}\right)\)

\(A=\sum\dfrac{1}{\sqrt{1+a^2}}=\sum\dfrac{\dfrac{1}{a}}{\sqrt{\dfrac{1}{a^2}+1}}=\sum\dfrac{x}{\sqrt{x^2+1}}=\sum\dfrac{x}{\sqrt{x^2+xy+yz+xz}}=\sum\dfrac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\dfrac{1}{2}\sum\dfrac{x}{x+y}+\dfrac{x}{x+z}=\dfrac{3}{2}\)