Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từng sau em hạn chế đăng nhiều bài cùng một lúc như thế này nhé.
Bài 1:
Ta có: \(a+\frac{4}{(a-b)(b+1)^2}=(a-b)+\frac{b+1}{2}+\frac{b+1}{2}+\frac{4}{(a-b)(b+1)^2}-1\)
Áp dụng BĐT AM-GM cho các số không âm ta có:
\((a-b)+\frac{b+1}{2}+\frac{b+1}{2}+\frac{4}{(a-b)(b+1)^2}\geq 4\sqrt[4]{\frac{4(a-b)(b+1)^2}{4(a-b)(b+1)^2}}=4\)
\(\Rightarrow a+\frac{4}{(a-b)(b+1)^2}=(a-b)+\frac{b+1}{2}+\frac{b+1}{2}+\frac{4}{(a-b)(b+1)^2}-1\geq 4-1\)
\(\Leftrightarrow a+\frac{4}{(a-b)(b+1)^2}\geq 3\)
Ta có đpcm.
Dấu bằng xảy ra khi \(a-b=\frac{b+1}{2}=\frac{4}{(a-b)(b+1)^2}\)
\(\Leftrightarrow a=2; b=1\)
Bài 2:
Đặt \(\left(\frac{a}{b}, \frac{b}{c}, \frac{c}{a}\right)\mapsto (x,y,z)\Rightarrow xyz=1\)
BĐT cần chứng minh tương đương với:
\(x^2+y^2+z^2\geq \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow x^2+y^2+z^2\geq \frac{xy+yz+xz}{xyz}=xy+yz+xz(*)\)
Áp dụng BĐT AM-GM:
\(x^2+y^2\geq 2\sqrt{x^2y^2}=2xy\)
\(y^2+z^2\geq 2\sqrt{y^2z^2}=2yz\)
\(z^2+x^2\geq 2\sqrt{z^2x^2}=2zx\)
Cộng theo vế: \(\Rightarrow 2(x^2+y^2+z^2)\geq 2(xy+yz+xz)\)
\(\Leftrightarrow x^2+y^2+z^2\geq xy+yz+xz\)
Do đó (*) đúng, ta có đpcm.
Dấu bằng xảy ra khi \(x=y=z=1\Leftrightarrow a=b=c\)
Bài 3:
Ta có: \(\text{VT}=(\frac{b}{\sqrt{a}}+\frac{c}{\sqrt{b}}+\frac{a}{\sqrt{c}})+(\frac{c}{\sqrt{a}}+\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}})\)
Áp dụng BĐT Bunhiacopxky:
\((\frac{b}{\sqrt{a}}+\frac{c}{\sqrt{b}}+\frac{a}{\sqrt{c}})(\sqrt{a}+\sqrt{b}+\sqrt{c})\geq (\sqrt{b}+\sqrt{c}+\sqrt{a})^2\)
\(\frac{b}{\sqrt{a}}+\frac{c}{\sqrt{b}}+\frac{a}{\sqrt{c}}\geq \sqrt{a}+\sqrt{b}+\sqrt{c}(1)\)
Áp dụng BĐT AM-GM:
\(\frac{c}{\sqrt{a}}+\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}}\geq 3\sqrt[3]{\frac{abc}{\sqrt{abc}}}=3(2)\) do $abc=1$
Từ \((1); (2)\Rightarrow \text{VT}\geq \sqrt{a}+\sqrt{b}+\sqrt{c}+3\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=1\)
Lời giải:
Áp dụng hệ quả của BĐT AM-GM:
\(\text{VT}^2=\left[\frac{1}{a(a+1)}+\frac{1}{b(b+1)}+\frac{1}{c(c+1)}\right]^2\geq 3\left(\frac{1}{ab(a+1)(b+1)}+\frac{1}{bc(b+1)(c+1)}+\frac{1}{ca(a+1)(c+1)}\right)\)
\(\Leftrightarrow \text{VT}^2\geq 3.\frac{a^2+b^2+c^2+a+b+c}{abc(a+1)(b+1)(c+1)}\geq 3.\frac{a+b+c+ab+bc+ac}{abc(a+1)(b+1)(c+1)}\)
\(\Leftrightarrow \text{VT}^2\geq \frac{3}{abc}-\frac{3(abc+1)}{abc(a+1)(b+1)(c+1)}\) \((1)\)
Ta sẽ cm \((a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3\). Thật vậy:
Áp dụng BĐT AM-GM:
\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}\)
\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}\)
Cộng theo vế: \(\Rightarrow 3\geq \frac{3(\sqrt[3]{abc}+1)}{\sqrt[3]{(a+1)(b+1)(c+1)}}\)
\(\Rightarrow (a+1)(b+1)(c+1)\geq (\sqrt[3]{abc}+1)^3\) (2)
Từ \((1),(2)\Rightarrow \text{VT}^2\geq \frac{3}{abc}-\frac{3(abc+1)}{abc(1+\sqrt[3]{abc})^3}=\frac{9}{\sqrt[3]{a^2b^2c^2}(1+\sqrt[3]{abc})^2}=\text{VP}^2\)
\(\Leftrightarrow \text{VT}\geq \text{VP}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=1\)
\(P=3x+2y+\dfrac{6}{x}+\dfrac{8}{y}=\dfrac{3x}{2}+\dfrac{6}{x}+\dfrac{y}{2}+\dfrac{8}{y}+\dfrac{3}{2}\left(x+y\right)\)
\(\Rightarrow P\ge2\sqrt{\dfrac{3x}{2}.\dfrac{6}{x}}+2\sqrt{\dfrac{y}{2}.\dfrac{8}{y}}+\dfrac{3}{2}.6=19\)
\(\Rightarrow P_{min}=19\) khi \(\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
Từ giả thiết \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\Rightarrow xy+yz+xz=1\left(x=\dfrac{1}{a};y=\dfrac{1}{b};z=\dfrac{1}{c}\right)\)
\(A=\sum\dfrac{1}{\sqrt{1+a^2}}=\sum\dfrac{\dfrac{1}{a}}{\sqrt{\dfrac{1}{a^2}+1}}=\sum\dfrac{x}{\sqrt{x^2+1}}=\sum\dfrac{x}{\sqrt{x^2+xy+yz+xz}}=\sum\dfrac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\dfrac{1}{2}\sum\dfrac{x}{x+y}+\dfrac{x}{x+z}=\dfrac{3}{2}\)
Áp dụng bđt AM - GM:
\(T=\dfrac{a+b+c}{\sqrt[3]{abc}}+\dfrac{\sqrt[3]{abc}}{a+b+c}=\left(\dfrac{1}{9}\dfrac{a+b+c}{\sqrt[3]{abc}}+\dfrac{\sqrt[3]{abc}}{a+b+c}\right)+\dfrac{8}{9}\dfrac{a+b+c}{\sqrt[3]{abc}}\ge2\sqrt{\dfrac{1}{9}}+\dfrac{8}{9}.3=\dfrac{2}{3}+\dfrac{8}{3}=\dfrac{10}{3}\).
Đẳng thức xảy ra khi a = b = c.
Vậy Min T = \(\dfrac{10}{3}\) khi a = b = c.