K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2018

TH1: a+b+c  khác 0

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Rightarrow2+\frac{a+b-c}{c}=2+\frac{b+c-a}{a}=2+\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

\(\Rightarrow a=b=c\)

thay a=b=c vào B ta có:

\(B=\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)=2\cdot2\cdot2=8\)

TH2: a+b+c=0

=> c=-a-b

=>a=-b-c

=>b=-a-c

thay a,b,c vào B ta có:

\(B=\left(1+\frac{-\left(a+c\right)}{a}\right)\cdot\left(1+\frac{-\left(b+c\right)}{c}\right)\cdot\left(1+\frac{-\left(a+b\right)}{b}\right)\)

\(B=\left(-\frac{c}{a}\right)\cdot\left(-\frac{b}{c}\right)\cdot\left(-\frac{a}{b}\right)=-1\)

p/s: th2 ko chắc nhá 

2 tháng 7 2018

áp dụng dãy tỉ số bằng nhau là được mà

2 tháng 7 2018

\(2x=3y=5z\)   \(\Rightarrow\) \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

      \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-y-z}{15-10-6}=\frac{-33}{-1}=33\)

suy ra:  \(\frac{x}{15}=33\) \(\Rightarrow\) \(x=495\)

           \(\frac{y}{10}=33\)\(\Rightarrow\)\(y=330\)

           \(\frac{z}{6}=33\)\(\Rightarrow\)\(z=198\)

Vậy...

b) lm tương tự

14 tháng 8 2020

a) \(\left(x-1\right)^3=27\Leftrightarrow\left(x-1\right)^3=3^3\Leftrightarrow x-1=3\Leftrightarrow x=4\)

b) \(x^2+x=0\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

c) \(\left(2x+1\right)^2=25\Leftrightarrow\left(2x+1\right)^2=5^2\Leftrightarrow\orbr{\begin{cases}2x+1=5\\2x+1=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

d)\(\left(2x-3\right)^2=36\Leftrightarrow\left(2x-3\right)^2=6^2\Leftrightarrow\orbr{\begin{cases}2x-3=6\\2x-3=-6\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{2}\\x=-\frac{3}{2}\end{cases}}}\)

14 tháng 8 2020

e)\(5^{x+2}=625\Leftrightarrow5^{x+2}=5^4\Leftrightarrow x+2=4\Leftrightarrow x=2\)

g) \(\left(2x-1\right)^3=-8\)

\(\Leftrightarrow\left(2x-1\right)^3=\left(-2\right)^3\)

\(\Leftrightarrow2x-1=-2\)

\(\Leftrightarrow2x=-1\)

\(\Leftrightarrow x=-\frac{1}{2}\)

9 tháng 10 2018

ít thôi bạn à

tham khảo các câu trả lời của mình nhé

9 tháng 10 2018

thống kê hỏi đáp

2 tháng 7 2015

a/ x/2 = y/3 = z/5 và x+y+z = -90

áp dụng tính chất của dãy tỉ số bằng nhau, có:

 \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{-90}{10}=-9\)

suy ra: \(\frac{x}{2}=-9\Rightarrow x=-9\cdot2=-18\)

\(\frac{y}{3}=-9\Rightarrow y=-9\cdot3=-27\)

\(\frac{z}{5}=-9\Rightarrow z=-9\cdot5=-45\)

2 tháng 7 2015

a/ x/2 = y/3 = z/5 và x+y+z = -90

áp dụng tính chất của dãy tỉ số bằng nhau, có:

 \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{-90}{10}=-9\)

suy ra: \(\frac{x}{2}=-9\Rightarrow x=-9\cdot2=-18\)

\(\frac{y}{3}=-9\Rightarrow y=-9\cdot3=-27\)

\(\frac{z}{5}=-9\Rightarrow z=-9\cdot5=-45\)

b/ 2x =3y= 5z và x-y+z =-33

=> 2x = 3y, 3y = 5z

=> x/3 = y/2, y/5 = z/3

=> x/15 = y/10 = z/6 và x - y + z = -33

áp dụng tính chất của dãy tỉ số bằng nhau, có:

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-y+z}{15-10+6}=\frac{-33}{11}=-3\)

suy ra: \(\frac{x}{15}=-3\Rightarrow x=-3\cdot15=-45\)

\(\frac{y}{10}=-3\Rightarrow y=-3\cdot10=-30\)

\(\frac{z}{6}=-3\Rightarrow z=-3\cdot6=-18\)

29 tháng 7 2015

b) 4x = 7y và \(x^2+y^2=260\)

Ta có: \(4x=7y\Rightarrow\frac{x}{7}=\frac{y}{4}\)

Đặt \(\frac{x}{7}=\frac{y}{4}=k\Rightarrow x=7k;\)\(y=4k\)

\(x^2+y^2=49k^2+16k^2=65k^2=260\)

\(\Rightarrow k^2=4\Rightarrow k=+-2\)

Với k = 2 thì: \(\frac{x}{7}=2\Rightarrow x=7.2=14\)

                      \(\frac{y}{4}=2\Rightarrow y=4.2=8\)

Với k = (-2) thì: \(\frac{x}{7}=-2\Rightarrow x=7.\left(-2\right)=-14\)

                          \(\frac{y}{4}=-2\Rightarrow x=4.\left(-2\right)=-8\)

Kết luận : \(x=+-14\)

                 \(y=+-8\)                          

29 tháng 7 2015

câu 1:Theo đề ta có: \(\frac{x}{2}=\frac{y}{4}\) và x2.y2=  64

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

  \(\frac{x}{2}=\frac{y}{4}\)<=> \(\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{x^2}{4}=\frac{y^2}{16}\)

Đặt   \(\frac{x^2}{4}=\frac{y^2}{16}=k\)

=> x2 =4k

    y2= 16k

thay vào : x2.y2=  64

Ta có:   4k.16k= 64

           64.k2    = 64

  =>        k     =  -1 ; 1

  =>      x2=    4.k =>   x2= -4; 4=>   x=  2;-2

     tương tự tìm y

26 tháng 2 2019

làm hộ, please

1 tháng 8 2016

dễ mà bạn nhưng dài mk ko muốn viết

1 tháng 8 2016

sao vậy giúp mình đi