Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = 1 + 2 + 22 + 23 + ...... + 22007
=> 2A = 2 + 22 + 23 + ...... + 22008
b) Suy ra : 2A - A = 22008 - 1
=> A = 22008 - 1
Vậy đpcm
a) ta có: A = 1 + 2^1 + 2^2 + 2^3 + ...+ 2^2007
=> 2A = 2 + 2^2+2^3+2^4+...+2^2008
b) ta có: 2A = 2 + 2^2 + 2^3 + 2^4+...+2^2008
=> 2A-A = 2^2008 - 1
A = 2^2008 - 1
a,\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(A=\left(1+\frac{1}{3}+...+\frac{1}{2005}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2006}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)
\(=B\left(ĐPCM\right)\)
b, \(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2006}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1003}\right)\)
\(A=\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\)
ui ghi lộn, chữ đpcm chuyển xuống dòng cuối cùng nhé :v
\(A=1+2^1+2^2+...+2^{2007}\)
\(\Rightarrow2A=2+2^2+...+2^{2008}\)
\(\Rightarrow2A-A=\left(2+2^2+...+2^{2008}\right)-\left(1+2+...+2^{2007}\right)\)
\(\Rightarrow A=2^{2008}-1\)
\(A=1+3+...+3^7\)
\(\Rightarrow3A=3+3^2+...+3^8\)
\(\Rightarrow3A-A=\left(3+3^2+...+3^8\right)-\left(1+3+...+3^7\right)\)
\(\Rightarrow2A=3^8-1\)
\(\Rightarrow A=\frac{3^8-1}{2}\)
\(a.\) \(A=1+2^1+2^2+2^3+...+2^{2007}\)
\(\Rightarrow2A=2.\left(1+2^1+2^2+2^3+...+2^{2007}\right)\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2008}\)
\(b.\)Sai đề rồi, sửa lại:
Chứng minh: \(A=2^{2008}-1\)
C/m: \(2A=2+2^2+2^3+2^4+...+2^{2008}\)
\(\Rightarrow A=2+2^2+2^3+2^4+...+2^{2008}-\left(1+2^1+2^2+2^3+...+2^{2007}\right)\)
\(\Rightarrow A=2^{2008}-1\)\(\left(đpcm\right)\)
Theo mk lak vậy !
a/ Có \(A=1+2^1+2^2+2^3+...+2^{2007}\)
\(\Rightarrow2A=2\left(1+2^1+2^2+2^3+...+2^{2007}\right)\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2008}\)
b/ Có \(2A-A=\left(2+2^2+2^3+2^4+...+2^{2008}\right)-\left(1+2^1+2^2+2^3+...+2^{2007}\right)\)
\(\Leftrightarrow A=2+2^2+2^3+2^4+...+2^{2008}-1-2^1-2^2-2^3-...-2^{2007}\)
\(\Leftrightarrow A=2^{2008}-1\)
( bạn có chép sai đề không vậy )
Ngân 2K7: Đề sai ở câu b) phải là chứng minh :\(A=2^{2008}-1\)
\(A=1+2^1+2^2+2^3+...+2^{2007}\)
a) \(\Rightarrow2A=2+2^2+2^3+...+2^{2008}\)
b) Từ kết quả câu a),ta có: \(2A-A=A=2^{2008}-1^{\left(đpcm\right)}\)
Làm một lèo xong luôn :v
\(A=1+2+2^2+...+2^{2007}\)
\(2A=2+2^2+2^3+...+2^{2008}\)
\(2A-A=\left(2+2^2+...+2^{2008}\right)-\left(1+2+...+2^{2007}\right)\)
\(A=2^{2008}-1\)
Câu b) viết sai đề
I don't now
mik ko biết
sorry
......................