K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2018

\(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ca}\)

\(\Rightarrow S=\frac{abc}{abc+a+ab}+\frac{1}{1+b+bc}+\frac{abc}{abc+c.abc+ca}\)

\(S=\frac{abc}{a.\left(bc+b+1\right)}+\frac{1}{1+b+bc}+\frac{abc}{ac.\left(bc+b+1\right)}\)

\(S=\frac{bc}{bc+b+1}+\frac{1}{1+b+bc}+\frac{b}{bc+b+1}\)

\(S=\frac{bc+b+1}{bc+b+1}\)

\(S=1\)

Điều kiện \(c\ge0\);\(a;b>0\)

Ta có: \(a>b\)

\(\Rightarrow ac\ge bc\)

\(\Rightarrow ac+ab\ge bc+ab\)

\(a.\left(b+c\right)\ge b.\left(c+a\right)\)

\(\Rightarrow\frac{a+c}{b+c}\ge\frac{a}{b}\)

Tham khảo nhé~

10 tháng 7 2016

Ta có : \(M=\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}=\frac{abc}{a^2}+\frac{abc}{b^2}+\frac{abc}{c^2}=abc\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=8.\frac{3}{4}=6\)

Vậy M = 6

10 tháng 7 2016

Thanks

 

14 tháng 9 2019

b)Ta có: \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge2\left(đpcm\right)\)

14 tháng 9 2019

\(a^5-a=a\left(a^4-1\right)\)

\(=a\left(a^2+1\right)\left(a^2-1\right)\)

\(=a\left(a^2+1\right)\left(a-1\right)\left(a+1\right)\)

\(=a\left(a^2-4+5\right)\left(a-1\right)\left(a+1\right)\)

\(=a\left(a^2-4\right)\left(a-1\right)\left(a+1\right)+5a\left(a+1\right)\left(a-1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a+1\right)\left(a-1\right)\)

Tích 5 số nguyên liên tiếp chia hết cho 5 nên \(a^5-a⋮5\)

Ta có : \(\frac{a^2+b^2}{2}=ab\Rightarrow a^2+b^2=2ab\)

\(\Rightarrow a^2-ab+b^2=0\Rightarrow\left(a-b\right)^2=0\Rightarrow a=b\)

Tương tự : \(\frac{b^2+c^2}{2}=bc\Rightarrow b=c\)

\(\frac{a^2+c^2}{2}=ac\Rightarrow a=c\)

Áp dụng t/c bắc cầu ta dc : \(a=b=c\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3a\times3=9a\)

=>a2+b2=2ab

=>a2-2ab+b2=0

=>(a-b)2=0=>a=b

tương tự=>b=c

=>a=b=c

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3a.3=9a\)

24 tháng 9 2016

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{b}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=\left(1+1+1\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

\(=3+\frac{a^2+b^2}{ab}+\frac{a^2+c^2}{ac}+\frac{b^2+c^2}{bc}\)

\(=3+\frac{a^2+b^2}{\frac{a^2+b^2}{2}}+\frac{a^2+c^2}{\frac{a^2+c^2}{2}}+\frac{b^2+c^2}{\frac{b^2+c^2}{2}}\)

\(=3+2+2+2=9\)

2 tháng 2 2018

Có : a/ab+a+1 = a/ab+a+abc = 1/b+1+bc = 1/bc+b+1

        c/ca+c+1 = bc/abc+bc+b = b/1+bc+b = b/bc+b+1

=> A = 1+bc+b/bc+b+1 = 1

Tk mk nha

2 tháng 2 2018

BÀI 1:

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{a\left(bc+b+1\right)}+\frac{abc}{ab\left(ca+c+1\right)}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a} +\frac{abc}{a^2bc+abc+ab}\)        

\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\)       (thay   abc = 1)

\(=\frac{a+ab+1}{a+ab+1}=1\)

21 tháng 6 2015

\(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ac}\)

=\(\frac{c}{c\left(1+a+ab\right)}+\frac{ac}{ac\left(1+b+bc\right)}+\frac{1}{1+c+ac}\)

=\(\frac{c}{c+ac+abc}+\frac{ac}{ac+abc+abc.c}+\frac{1}{1+c+ac}\)

thay abc=1 ta được:

\(\frac{c}{c+ac+1}+\frac{ac}{ac+1+c}+\frac{1}{1+c+ac}\)(cùng mẫu c+ac+1)

=\(\frac{c+ac+1}{c+ac+1}=1\)

vậy S=1