K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2018

2. \(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{2}{x.\left(x+1\right)}=\dfrac{2}{9}\)

\(\dfrac{2}{42}+\dfrac{2}{56}+\dfrac{2}{72}+...+\dfrac{2}{x.\left(x+1\right)}=\dfrac{2}{9}\)

\(\dfrac{2}{6.7}+\dfrac{2}{7.8}+\dfrac{2}{8.9}+...+\dfrac{2}{x.\left(x+1\right)}=\dfrac{2}{9}\)

\(2.\left(\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{x.\left(x+1\right)}\right)=\dfrac{2}{9}\)

\(2.\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\)

\(2.\left(\dfrac{1}{6}-\dfrac{1}{x+1}=\dfrac{2}{9}\right)\)

\(\dfrac{1}{6}-\dfrac{1}{x+1}=\dfrac{2}{9}:2\)

\(\dfrac{1}{6}-\dfrac{1}{x+1}=\dfrac{1}{9}\)

\(\dfrac{1}{x+1}=\dfrac{1}{6}-\dfrac{1}{9}\)

\(\dfrac{1}{x+1}=\dfrac{1}{18}\)

\(\Rightarrow x+1=18\)

\(\Rightarrow x=17\)

15 tháng 4 2018

Ta có : 

\(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};...;\frac{1}{9^2}>\frac{1}{9.10}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}>\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}>\frac{1}{2}-\frac{1}{10}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}>\frac{5}{10}-\frac{1}{10}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}>\frac{4}{10}=\frac{2}{5}\left(1\right)\)

Ta có : 

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{9^2}< \frac{1}{8.9}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}< 1-\frac{1}{9}=\frac{8}{9}\left(2\right)\)

Từ ( 1 ) , ( 2 ) => ĐPCM 

Chúc bạn học tốt !!! 

15 tháng 4 2018

Đề sai bạn nhé : 

Đề đúng : 

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}\)

CM :  \(\frac{2}{5}< A< \frac{8}{9}\)

24 tháng 6 2015

ta có A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\) <   \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}\)

=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)

\(1-\frac{1}{9}\)

\(\frac{8}{9}\)

suy ra A < \(\frac{8}{9}\)

 ta có A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)j> \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

=  \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

\(\frac{1}{2}-\frac{1}{10}\)

\(\frac{2}{5}\)

suy ra A >\(\frac{2}{5}\)

9 tháng 8 2015

A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}\)


A < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}\)

A < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)

A < \(1-\frac{1}{9}\)

A < \(\frac{8}{9}\)


A > \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

A > \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

A > \(\frac{1}{2}-\frac{1}{10}\)

A > \(\frac{2}{5}\)


KL: \(\frac{2}{5}\)< A < \(\frac{8}{9}\) (đpcm)