Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo mình nghĩ thì đề thiếu là tam giác ABC vuông tại A nhé!
Bạn xem lại đề!:)
vì z tỉ lệ thuận với y theo hệ số tỉ lệ là k
:-) z=k.y. (1)
mà y tỉ lệ thuận với x theo hệ số tỉ lệ là h
:-) y= k.x (2)
Từ (1) và (2) :-) z tỉ lệ thuận với x theo hệ số tỉ lệ là kk
mk ko chép đề mà tách luôn nha
M = x2x2 + x2x2 + x2y2 + x2y2 + x2y2 + y2y2 + y2
= ( x2x2 + x2y2 ) + ( x2x2 + x2y2 ) + ( x2y2 + y2y2 ) + y2
= x2( x2 + y2 ) + x2( x2 + y2 ) + y2( x2 + y2 ) + y2
= ( x2 + y2 ) (x2 + x2 + y2 ) + y2
= 1( x2 + 1) + y2
= x2 + y2 +1 = 2
Ta có: \(\left|x-1\right|+\left|x-5\right|=\left|x-1\right|+\left|5-x\right|\)
Nhận thấy: \(\left[{}\begin{matrix}\left|x-1\right|\ge x-1\\\left|5-x\right|\ge5-x\end{matrix}\right.\)
\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge x-1+5-x\)
\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge4\)
Dấu \("="\) xảy ra khi:
\(\left[{}\begin{matrix}x-1\ge0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le5\end{matrix}\right.\) \(\Rightarrow1\le x\le5\)
Vậy \(1\le x\le5.\)
Cho mk thêm cái ạ:
\(x\in\left\{1;2;3;4;5\right\}\)
Vậy \(x\in\left\{1;2;3;4;5\right\}\)
Học thêm rùi
Tam giác vuông ABC, BG là đường phân giác góc ABC cắt đường trung trực cạnh AC tại G ở trong tam giác; Từ G kẻ GM vuông góc với cạnh AB và GN vuông góc với cạnh huyền BC; nối G với A, G với C.
Chứng minh AB = CB
Bài làm:
Xét 2 tam giác vuông ADG và CDG ta có: cạnh DG chung và AD = CD vì DG là đường trung trực AC (gỉa thiết).
Do đó 2 tam giác vuông ADG = CDG (Trường hợp bằng nhau của tam giác vuông- cạnh huyền và một cạnh góc vuông bằng
nhau) nên ta có: AG = CG (1)
Xét 2 tam giác vuông BMG và BNG ta có: cạnh huyền
BG chung, góc MBG = góc NBG vì BG là đường phân giác góc ABC (gỉa thiết). Do đó 2 tam giác vuông BMG = BNG (trường hợp bằng nhau của tam giác vuông – cạnh huyền và một góc nhọn bằng nhau), nên ta có: MG = NG (2) và MB = NB (3)
Do đó 2 tam giác vuông AMG = CNG (Trường hợp bằng nhau của tam giác vuông - cạnh huyền và một cạnh góc vuông bằng nhau), nên ta có AM = CN (4)
Từ (4) và (3) cộng 2 vế ta có AM + MB = CN + NB mà AM + MB = AB chính là cạnh của tam giác vuông ABC và CN + NB = CB chính là cạnh huyền của tam giác vuông ABC. Vậy AB = CB