Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này dài lăm mk làm giúp 1 câu
A = (x -y)2 + (x+1)2 + (y-1)2 + 1
vậy GTNN = 1
(bn phân h 2x2 = x2 + x2
2y2 = y2+ y2 và 3 =1+1+1
là hiểu cách mk làm , còn nếu k hiểu ra đưa thầy giáo ,thầy sẽ gọi mk là thiên tài)
bạn đó giải rồi nhung nếu cần mình giải kỹ thì nhắn tin mình nha
a) \(A=\left(x+1\right)\left(2x-1\right)\)
\(A=2x^2+x-1\)
\(A=2\left(x^2+\frac{1}{2}x-\frac{1}{2}\right)\)
\(A=2\left[x^2+2\cdot x\cdot\frac{1}{4}+\left(\frac{1}{4}\right)^2-\frac{9}{16}\right]\)
\(A=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]\)
\(A=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge\frac{-9}{8}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=\frac{-1}{4}\)
Vậy Amin = -9/8 khi và chỉ khi x = -1/4
b) \(B=4x^2-4xy+2y^2+1\)
\(B=\left(2x\right)^2-2\cdot2x\cdot y+y^2+y^2+1\)
\(B=\left(2x-y\right)^2+y^2+1\ge1\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y=0\\y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}\Rightarrow}}x=y=0\)
Vậy Bmin = 1 khi và chỉ khi x = y = 0
2,a A+4=4+(5x^2+6x+1)/x^2=(9x^2+6x+1)/x^2=(3x+1)^2/x^2 >/ 0 với mọi x
=>A >/ -4 =>minA=-4 , đẳng thức xảy ra khi x=-1/3
2,b dễ c/m bđt : x^3+y^3 >/ (x+y)^3/4,khai triển hết ra còn 3(x-y)^2 >/ 0 ,đẳng thức xảy ra khi x=y
x^6+y^6=(x^2)^3+(y^2)^3 >/ (x^2+y^2)^3/4=1/4 ,đẳng thức xảy ra khi x=y=1/căn(2)
2,c (a^3-3ab^2)^2=a^6-6a^4b^2+9a^2b^4=5^2=25
(b^3-3a^2b)^2=b^6-6a^2b^4+9a^4b^2=10^2=100
Cộng theo vế đc a^6+b^6+3a^2b^4+3a^4b^2=(a^2+b^2)^3=25+100=125 =>S=a^2+b^2=5
a) \(A=2x^2-6x=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\forall x\)
Vậy GTNN của A = -9/2 khi x = 3/2.
b) \(B=x^2-x+\frac{1}{4}+y^2+6y+9+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x;y\)
Vậy, GTNN của B = 3/4 khi x=1/2 và y=-3
\(3x^2-6x+1\)
\(=3\left(x^2-2x+\frac{1}{3}\right)\)
\(=3\left(x-1\right)^2-\frac{2}{3}\)
vì \(3\left(x-2\right)^2\ge0\)nên \(3\left(x-1\right)^2-\frac{2}{3}\ge\frac{2}{3}\)
vậy GTNN của biểu thức =2/3
minh tống ơi chắc là sai đấy
a)=(x2+ y2-2xy)+1
=(x-y)2+1> hoặc = 1
suy ra:GTNN=1
b)=x2-2x2+4-4+9/2
=(x-2)2+1/2 > hoặc bằng 1/2
suy ra GTNN=1/2 khi x-2=0 khi x=2
C)=2(x2+ 4x +5)
=2[(x2+ 2x2 + 4) +1]
=2[(x+2)2+1]
=2(x+2)2+2>hoặc bằng 2
suy ra GTNN=2 khi 2(x+2)2=0 khi x+2=0 khi x=-2
\(x^2+y^2-2xy+1\)
\(=\left(x-y\right)^2+1\ge1\)
=> GTNN của biểu thức bằng 1
\(\Leftrightarrow\left(x-y\right)^2=0\)
\(\Leftrightarrow x-y=0\)
Vậy ................
b, -(2x-1)2+10I2x-1I+2018
Vì :
(2x-1)2 >= 0 với mọi x
=> -(2x-1)2 =< -0 với mọi x 1
I2x-1I >= 0 với mọi x
=> 10I2x-1I >= 0 với mọi x 2
Từ (1) và (2) :
=> -(2x-1)2+10I2x-1I =< -0 với mọi x
=> -(2x-1)2+10I2x-1I +2018 =< -0+2018 với mọi x
=> -(2x-1)2+10I2x-1I +2018 =< - 2018 với mọi x
=> GTLN là -2018
Vậy GTLN là -2018 .