Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{49^{24}.125^{10}.2^8-5^{30}.7^{49}.4^5}{5^{29}.16^2.7^{48}}\)
\(=\frac{\left(7^2\right)^{24}.\left(5^3\right)^{10}.2^8-5^{30}.7^{49}.\left(2^2\right)^5}{5^{29}.\left(2^4\right)^2.7^{48}}\)
\(=\frac{7^{48}.5^{30}.2^8-5^{30}.7^{49}.2^{10}}{5^{29}.2^8.7^{48}}\)
\(=\frac{7^{48}.5^{30}.2^8.\left(1-7.2^2\right)}{5^{29}.2^8.7^{48}}\)
\(=5.\left(1-7.4\right)\)
\(=5.\left(1-28\right)\)
\(=5.\left(-27\right)=-135\)
Đặt : \(P=\frac{48^2\cdot8^5\cdot100^9}{12^2\cdot2^{15}\cdot4^2}\)
\(=\frac{\left(2^4\cdot3\right)^2\cdot\left(2^3\right)^5\cdot\left(2^2\cdot5^2\right)^9}{\left(2^2\cdot3\right)^2\cdot2^{15}\cdot\left(2^2\right)^2}\)
\(=\frac{2^8\cdot3^2\cdot2^{15}\cdot2^{18}\cdot5^{18}}{2^4\cdot3^2\cdot2^{15}\cdot2^4}\)
\(=\frac{2^{41}\cdot3^2\cdot5^{18}}{2^{23}\cdot3^2}=2^{18}\cdot5^{18}=\left(2\cdot5\right)^{18}=10^{18}\)
Vậy : \(P=10^{18}\)
a) \(\frac{1}{2}-\left(2x-\frac{3}{4}\right)=-\frac{5}{8}\)
\(\frac{1}{2}-2x+\frac{3}{4}=-\frac{5}{8}\)
\(\frac{1}{2}+\frac{3}{4}-2x=-\frac{5}{8}\)
\(1,25-2x=-0,625\)
\(2x=1,875\)
\(x=0,9375\)
b) \(-\frac{1}{2}-\frac{3}{2}.\left(x+\frac{5}{3}\right)=-\frac{1}{4}\)
\(-\frac{1}{2}-\frac{3}{2}.x-\frac{5}{2}=-\frac{1}{4}\)
\(-\frac{1}{2}-\frac{5}{2}-\frac{3}{2}.x=-\frac{1}{4}\)
\(-3-\frac{3}{2}.x=-\frac{1}{4}\)
...
đến đây thì b tự tính nha!
(2^x-8)^3=(4^x+2^x+5)^3-(4^x+13)^3
(2^x-8)^3=[(4^x+2^x+5)-(4^x+13)]*[(4^x... + (4^x+13)^2]
(2^x-8)^3=(2^x-8)*[(4^x+2^x+5)^2+(4^x+... + (4^x+13)^2]
2^x=8=>x=3
hoặc (2^x-8)^2=(4^x+2^x+5)^2+(4^x+2^x+5)(4^x+... + (4^x+13)^2
(4^x+2^x+5)^2 - (2^x-8)^2+(4^x+2^x+5)(4^x+13) + (4^x+13)^2=0
[(4^x+2^x+5)-(2^x-8)]*[(4^x+2^x+5)+(2^... + (4^x+3)*[(4^x+2^x+5)+(4^x+13)]=0
(4^x+13)*(4^x+2*2^x-3) + (4^x+3)*(2*4^x+2^x+18)=0
(4^x+13)[(4^x+2*2^x-3) + (2*4^x+2^x+18)]=0
4^x+13=0 (VN)
hoặc 3*4^x + 3*2^x +15=0
đặt t=2^x ( t>0)
t^2 + t + 5=0 ptvn
Đặt A = 1+2+2^2+2^3+....+2^60
2A = 2+2^2+2^3+2^4+.....+2^61
2A-A= ( 2+2^2+2^3+....+2^61)-(1+2+2^2+.....+2^60)
A = 2^61-1
\(\)
\(\frac{3}{2}-\left(x+\frac{1}{2}\right)=\frac{4}{5}\)
\(\left(x+\frac{1}{2}\right)=\frac{3}{2}-\frac{4}{5}\)
\(\left(x+\frac{1}{2}\right)=\frac{7}{10}\)
\(x=\frac{7}{10}-\frac{1}{2}\)
\(x=\frac{1}{5}\)
\(\frac{3}{2}-\left(x+\frac{1}{2}\right)=\frac{4}{5}\)
\(\left(x+\frac{1}{2}\right)=\frac{3}{2}-\frac{4}{5}\)
\(\left(x+\frac{1}{2}\right)=\frac{7}{10}\)
\(x=\frac{7}{10}-\frac{1}{2}=\frac{1}{5}\)