Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
a/ \(x^2+\left(y-10\right)^2=0\)
vì: \(\left\{{}\begin{matrix}x^2\ge0\forall x\\\left(y-10\right)^4\ge0\forall y\end{matrix}\right.\)
=> Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y-10=0\Rightarrow y=10\end{matrix}\right.\)
vậy......
b/ \(\left(0,5x-5\right)^{20}+\left(y^2-0,25\right)^{10}\le0\)
vì: \(\left\{{}\begin{matrix}\left(0,5x-5\right)^{20}\ge0\forall x\\\left(y^2-0,25\right)^2\ge0\forall y\end{matrix}\right.\)=> \(\left(0,5x-5\right)^{20}+\left(y^2-0,25\right)^{10}\ge0\)
=> Dấu ''='' xảy ra khi :
\(\left\{{}\begin{matrix}0,5x-5=0\\y^2-0,25=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{0,5}=10\\y^2=0,25\Rightarrow\left[{}\begin{matrix}y=0,5\\y=-0,5\end{matrix}\right.\end{matrix}\right.\)
Vậy........
2/ Ta có: \(2011\equiv1\left(mod10\right)\)
\(2011^{201}\equiv1^{201}\equiv1\left(mod10\right)\);
Có: \(1997^3\equiv3\left(mod10\right)\)
\(\left(1997^3\right)^4\equiv3^4\equiv1\left(mod10\right)\)
\(\left(1997^{12}\right)^{14}\equiv1^{14}\equiv1\left(mod10\right)\) hay \(1997^{168}\equiv1\left(mod10\right)\)
=> \(2011^{201}-1997^{168}\equiv1-1\equiv0\left(mod10\right)\)
hay \(2011^{201}-1997^{168}\) chia hết cho 10
=> Đpcm
Lời giải:
a) Ta thấy: \(\left\{\begin{matrix} (x-1)^2\geq 0\\ (y-1)^2\geq 0\end{matrix}\right., \forall x,y\in\mathbb{R}\)
Do đó: \(A=(x-1)^2+(y-1)^2+2018\geq 0+0+2018=2018\)
Vậy \(A_{\min}=2018\) tại \(x=y=1\)
b) Vì \(|x-3|\geq 0, \forall x\) và \(y^4=(y^2)^2\geq 0, \forall y\)
Do đó: \(B=|x-3|+y^4-10\geq 0+0-10=-10\)
Vậy \(B_{\min}=-10\) tại $x=3, y=0$
c) Không có GTNN, chỉ có GTLN.
Vì \((3x-1^2\geq 0, \forall x\in\mathbb{R}\)
Do đó: \(C=\frac{1}{7}-(3x-1)^2\leq \frac{1}{7}-0=\frac{1}{7}\)
Vậy \(C_{\max}=\frac{1}{7}\) tại \(x=\frac{1}{3}\)
d)????
1) \(5^x+5^{x+2}=650\)
\(\Rightarrow5^x.1+5^x.5^2=650\)
\(\Rightarrow5^x.\left(1+5^2\right)=650\)
\(\Rightarrow5^x.26=650\)
\(\Rightarrow5^x=650:26\)
\(\Rightarrow5^x=25\)
\(\Rightarrow5^x=5^2\)
\(\Rightarrow x=2\)
Vậy \(x=2.\)
Mình chỉ làm câu 1) thôi nhé.
Chúc bạn học tốt!
a) \(\left(x-2\right)^3=-27\)
\(\Rightarrow\left(x-2\right)^3=\left(-3\right)^3\)
\(\Rightarrow x-2=-3\)
\(\Rightarrow x=-1\)
Vậy \(x=-1\)
b) \(\left(2x+1\right)^4=81\)
\(\Rightarrow\left(2x+1\right)^4=3^4=\left(-3\right)^4\)
\(\left\{{}\begin{matrix}\left(2x+1\right)^4=3^4\Rightarrow2x+1=3\Rightarrow x=1\\\left(2x+1\right)^4=\left(-3\right)^4\Rightarrow2x+1=-3\Rightarrow x=-2\end{matrix}\right.\)
Vậy \(x=1;x=-2\)
c) Bạn xem lại đề bài nhé!
d) \(\left(5x-2\right)^{10}=\left(5x-2\right)^{100}\)
\(\Rightarrow\left(5x-2\right)^{10}-\left(5x-2\right)^{100}=0\)
\(\Rightarrow\left(5x-2\right)^{10}.\left[1-\left(5x-2\right)^{90}\right]=0\)
+) TH1: \(\left(5x-2\right)^{10}=0\)
\(\Rightarrow5x-2=0\)
\(\Rightarrow x=\dfrac{2}{5}\)
+) TH2: \(1-\left(5x-2\right)^{90}=0\)
\(\Rightarrow\left(5x-2\right)^{90}=1\)
\(\Rightarrow\left(5x-2\right)^{90}=1^{90}=\left(-1\right)^{90}\)
\(\Rightarrow\left\{{}\begin{matrix}\left(5x-2\right)^{90}=1^{90}\Rightarrow5x-2=1\Rightarrow x=\dfrac{3}{5}\\\left(5x-2\right)^{90}=\left(-1\right)^{90}\Rightarrow5x-2=-1\Rightarrow x=\dfrac{1}{5}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{1}{5};\dfrac{2}{5};\dfrac{3}{5}\right\}\)
a: \(\dfrac{3x+2}{5x+7}=\dfrac{3x-1}{5x+1}\)
\(\Leftrightarrow\left(3x+2\right)\left(5x+1\right)=\left(3x-1\right)\left(5x+7\right)\)
\(\Leftrightarrow15x^2+3x+10x+2=15x^2+21x-5x-7\)
=>16x-7=13x+2
=>3x=9
hay x=3
b: \(\dfrac{x+1}{2016}+\dfrac{x}{2017}=\dfrac{x+2}{2015}+\dfrac{x+3}{2014}\)
\(\Leftrightarrow\left(\dfrac{x+1}{2016}+1\right)+\left(\dfrac{x}{2017}+1\right)=\left(\dfrac{x+2}{2015}+1\right)+\left(\dfrac{x+3}{2014}+1\right)\)
=>x+2017=0
hay x=-2017
e: \(\left(2x-3\right)^2=144\)
=>2x-3=12 hoặc 2x-3=-12
=>2x=15 hoặc 2x=-9
=>x=15/2 hoặc x=-9/2
a. \(3x^2-10x+7\)
\(=3\left(x^2-\dfrac{10}{3}x+\dfrac{7}{3}\right)\)
\(=3\left(x^2-2.x.\dfrac{5}{3}+\dfrac{25}{9}-\dfrac{4}{9}\right)\)
\(=3\left(x-\dfrac{5}{3}\right)^2-\dfrac{4}{3}\le\dfrac{4}{3}\)
=> đpcm
b. \(4x^2-9x+5\)
\(=\left(2x\right)^2-2.2x.\dfrac{9}{4}+\dfrac{81}{16}-\dfrac{1}{16}\)
\(=\left(2x-\dfrac{9}{4}\right)^2-\dfrac{1}{16}\le\dfrac{1}{16}\forall x\)
=> đpcm
bạn ơi hình như sai ý
câu a là bé hơn hoặc = 0
câu b là lớn hơn hoặc = 0
bạn giải rõ hơn đc ko
Ta có:\(\left|-2x^4-x^2-9\right|=\left|2x^4+x^2+9\right|\) vì ta có tính chất \(\left|a\right|=\left|-a\right|\)
Áp dụng bất đẳng thức trị tuyệt đối,ta có:
\(A=\left|2x^4+3x^2+9\right|-\left|2x^4+x^2+9\right|=\left|2x^4+4x^2+9-2x^4-x^2-9\right|=3x^2\ge0\) với \(\forall x\)
Tự tìm dấu bằng xảy ra -.-
1 . \(\left(3x-2\right)^{10}=\left(3x-2\right)^7\)
<=> \(\left(3x-2\right)^{10}-\left(3x-2\right)^7=0\)
<=> \(\left(3x-2\right)^7.\left[\left(3x-2\right)^3-1\right]=0\)
<=> \(\orbr{\begin{cases}3x-2=0\\\left(3x-2\right)^3=1\end{cases}}\) <=> \(\orbr{\begin{cases}3x=2\\3x-2=1\end{cases}}\)<=>\(\orbr{\begin{cases}x=\frac{2}{3}\\3x=3\end{cases}}\)<=>\(\orbr{\begin{cases}x=\frac{2}{3}\\x=1\end{cases}}\)
vậy .....