K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2018

1 .  \(\left(3x-2\right)^{10}=\left(3x-2\right)^7\)

<=> \(\left(3x-2\right)^{10}-\left(3x-2\right)^7=0\)

<=> \(\left(3x-2\right)^7.\left[\left(3x-2\right)^3-1\right]=0\)

<=> \(\orbr{\begin{cases}3x-2=0\\\left(3x-2\right)^3=1\end{cases}}\) <=> \(\orbr{\begin{cases}3x=2\\3x-2=1\end{cases}}\)<=>\(\orbr{\begin{cases}x=\frac{2}{3}\\3x=3\end{cases}}\)<=>\(\orbr{\begin{cases}x=\frac{2}{3}\\x=1\end{cases}}\)

vậy .....

3 tháng 8 2018

1/

a/ \(x^2+\left(y-10\right)^2=0\)

vì: \(\left\{{}\begin{matrix}x^2\ge0\forall x\\\left(y-10\right)^4\ge0\forall y\end{matrix}\right.\)

=> Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y-10=0\Rightarrow y=10\end{matrix}\right.\)

vậy......

b/ \(\left(0,5x-5\right)^{20}+\left(y^2-0,25\right)^{10}\le0\)

vì: \(\left\{{}\begin{matrix}\left(0,5x-5\right)^{20}\ge0\forall x\\\left(y^2-0,25\right)^2\ge0\forall y\end{matrix}\right.\)=> \(\left(0,5x-5\right)^{20}+\left(y^2-0,25\right)^{10}\ge0\)

=> Dấu ''='' xảy ra khi :

\(\left\{{}\begin{matrix}0,5x-5=0\\y^2-0,25=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{0,5}=10\\y^2=0,25\Rightarrow\left[{}\begin{matrix}y=0,5\\y=-0,5\end{matrix}\right.\end{matrix}\right.\)

Vậy........

2/ Ta có: \(2011\equiv1\left(mod10\right)\)

\(2011^{201}\equiv1^{201}\equiv1\left(mod10\right)\);

Có: \(1997^3\equiv3\left(mod10\right)\)

\(\left(1997^3\right)^4\equiv3^4\equiv1\left(mod10\right)\)

\(\left(1997^{12}\right)^{14}\equiv1^{14}\equiv1\left(mod10\right)\) hay \(1997^{168}\equiv1\left(mod10\right)\)

=> \(2011^{201}-1997^{168}\equiv1-1\equiv0\left(mod10\right)\)

hay \(2011^{201}-1997^{168}\) chia hết cho 10

=> Đpcm

AH
Akai Haruma
Giáo viên
4 tháng 8 2018

Lời giải:

a) Ta thấy: \(\left\{\begin{matrix} (x-1)^2\geq 0\\ (y-1)^2\geq 0\end{matrix}\right., \forall x,y\in\mathbb{R}\)

Do đó: \(A=(x-1)^2+(y-1)^2+2018\geq 0+0+2018=2018\)

Vậy \(A_{\min}=2018\) tại \(x=y=1\)

b) Vì \(|x-3|\geq 0, \forall x\)\(y^4=(y^2)^2\geq 0, \forall y\)

Do đó: \(B=|x-3|+y^4-10\geq 0+0-10=-10\)

Vậy \(B_{\min}=-10\) tại $x=3, y=0$

c) Không có GTNN, chỉ có GTLN.

\((3x-1^2\geq 0, \forall x\in\mathbb{R}\)

Do đó: \(C=\frac{1}{7}-(3x-1)^2\leq \frac{1}{7}-0=\frac{1}{7}\)

Vậy \(C_{\max}=\frac{1}{7}\) tại \(x=\frac{1}{3}\)

d)????

17 tháng 9 2019

1) \(5^x+5^{x+2}=650\)

\(\Rightarrow5^x.1+5^x.5^2=650\)

\(\Rightarrow5^x.\left(1+5^2\right)=650\)

\(\Rightarrow5^x.26=650\)

\(\Rightarrow5^x=650:26\)

\(\Rightarrow5^x=25\)

\(\Rightarrow5^x=5^2\)

\(\Rightarrow x=2\)

Vậy \(x=2.\)

Mình chỉ làm câu 1) thôi nhé.

Chúc bạn học tốt!

3 tháng 8 2017

a) \(\left(x-2\right)^3=-27\)

\(\Rightarrow\left(x-2\right)^3=\left(-3\right)^3\)

\(\Rightarrow x-2=-3\)

\(\Rightarrow x=-1\)

Vậy \(x=-1\)

b) \(\left(2x+1\right)^4=81\)

\(\Rightarrow\left(2x+1\right)^4=3^4=\left(-3\right)^4\)

\(\left\{{}\begin{matrix}\left(2x+1\right)^4=3^4\Rightarrow2x+1=3\Rightarrow x=1\\\left(2x+1\right)^4=\left(-3\right)^4\Rightarrow2x+1=-3\Rightarrow x=-2\end{matrix}\right.\)

Vậy \(x=1;x=-2\)

c) Bạn xem lại đề bài nhé!

d) \(\left(5x-2\right)^{10}=\left(5x-2\right)^{100}\)

\(\Rightarrow\left(5x-2\right)^{10}-\left(5x-2\right)^{100}=0\)

\(\Rightarrow\left(5x-2\right)^{10}.\left[1-\left(5x-2\right)^{90}\right]=0\)

+) TH1: \(\left(5x-2\right)^{10}=0\)

\(\Rightarrow5x-2=0\)

\(\Rightarrow x=\dfrac{2}{5}\)

+) TH2: \(1-\left(5x-2\right)^{90}=0\)

\(\Rightarrow\left(5x-2\right)^{90}=1\)

\(\Rightarrow\left(5x-2\right)^{90}=1^{90}=\left(-1\right)^{90}\)

\(\Rightarrow\left\{{}\begin{matrix}\left(5x-2\right)^{90}=1^{90}\Rightarrow5x-2=1\Rightarrow x=\dfrac{3}{5}\\\left(5x-2\right)^{90}=\left(-1\right)^{90}\Rightarrow5x-2=-1\Rightarrow x=\dfrac{1}{5}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{1}{5};\dfrac{2}{5};\dfrac{3}{5}\right\}\)

3 tháng 8 2017

đúng rồi có sai đâu với trả lời giúp mình bài hình với

a: \(\dfrac{3x+2}{5x+7}=\dfrac{3x-1}{5x+1}\)

\(\Leftrightarrow\left(3x+2\right)\left(5x+1\right)=\left(3x-1\right)\left(5x+7\right)\)

\(\Leftrightarrow15x^2+3x+10x+2=15x^2+21x-5x-7\)

=>16x-7=13x+2

=>3x=9

hay x=3

b: \(\dfrac{x+1}{2016}+\dfrac{x}{2017}=\dfrac{x+2}{2015}+\dfrac{x+3}{2014}\)

\(\Leftrightarrow\left(\dfrac{x+1}{2016}+1\right)+\left(\dfrac{x}{2017}+1\right)=\left(\dfrac{x+2}{2015}+1\right)+\left(\dfrac{x+3}{2014}+1\right)\)

=>x+2017=0

hay x=-2017

e: \(\left(2x-3\right)^2=144\)

=>2x-3=12 hoặc 2x-3=-12

=>2x=15 hoặc 2x=-9

=>x=15/2 hoặc x=-9/2

23 tháng 7 2017

a. \(3x^2-10x+7\)

\(=3\left(x^2-\dfrac{10}{3}x+\dfrac{7}{3}\right)\)

\(=3\left(x^2-2.x.\dfrac{5}{3}+\dfrac{25}{9}-\dfrac{4}{9}\right)\)

\(=3\left(x-\dfrac{5}{3}\right)^2-\dfrac{4}{3}\le\dfrac{4}{3}\)

=> đpcm

b. \(4x^2-9x+5\)

\(=\left(2x\right)^2-2.2x.\dfrac{9}{4}+\dfrac{81}{16}-\dfrac{1}{16}\)

\(=\left(2x-\dfrac{9}{4}\right)^2-\dfrac{1}{16}\le\dfrac{1}{16}\forall x\)

=> đpcm

24 tháng 7 2017

bạn ơi hình như sai ý

câu a là bé hơn hoặc = 0

câu b là lớn hơn hoặc = 0

bạn giải rõ hơn đc ko

17 tháng 5 2019

Ta có:\(\left|-2x^4-x^2-9\right|=\left|2x^4+x^2+9\right|\) vì ta có tính chất \(\left|a\right|=\left|-a\right|\)

Áp dụng bất đẳng thức trị tuyệt đối,ta có:

\(A=\left|2x^4+3x^2+9\right|-\left|2x^4+x^2+9\right|=\left|2x^4+4x^2+9-2x^4-x^2-9\right|=3x^2\ge0\) với \(\forall x\)

Tự tìm dấu bằng xảy ra -.-